3 resultados para Fractional powers
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of the article is to present a unified approach to the existence, uniqueness and regularity of solutions to problems belonging to a class of second order in time semilinear partial differential equations in Banach spaces. Our results are applied next to a number of examples appearing in literature, which fall into the class of strongly damped semilinear wave equations. The present work essentially extends the results on the existence and regularity of solutions to such problems. Previously, these problems have been considered mostly within the Hilbert space setting and with the main part operators being selfadjoint. In this article we present a more general approach, involving sectorial operators in reflexive Banach spaces. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
In the present paper we report on the experimental electron sheet density vs. magnetic field diagram for the magnetoresistance R(xx) of a two-dimensional electron system (2DES) with two occupied subbands. For magnetic fields above 9T, we found fractional quantum Hall levels centered around the filing factor v = 3/2 in both the two occupied electric subbands. We focused specially on the fractional levels of the second subband, whose experimental values of the magnetic field B of their minima do not obey a periodicity law in 1/|B-B(c)|, where B(c) is the critical field at the filling factor v = 3/2, and we explain this fact entirely in the framework of the composite fermions theory. We use a simple theoretical model to give a possible explanation for the fact. Copyright (c) EPLA, 2011
Resumo:
We report on integer and fractional microwave-induced resistance oscillations in a 2D electron system with high density and moderate mobility, and present results of measurements at high microwave intensity and temperature. Fractional microwave-induced resistance oscillations occur up to fractional denominator 8 and are quenched independently of their fractional order. We discuss our results and compare them with existing theoretical models. (C) 2009 Elsevier B.V. All rights reserved.