2 resultados para Forestry as an occupation.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Recent developments have highlighted the importance of forest amount at large spatial scales and of matrix quality for ecological processes in remnants. These developments, in turn, suggest the potential for reducing biodiversity loss through the maintenance of a high percentage of forest combined with sensitive management of anthropogenic areas. We conducted a multi-taxa survey to evaluate the potential for biodiversity maintenance in an Atlantic forest landscape that presented a favorable context from a theoretical perspective (high proportion of mature forest partly surrounded by structurally complex matrices). We sampled ferns, butterflies, frogs, lizards, bats, small mammals and birds in interiors and edges of large and small mature forest remnants and two matrices (second-growth forests and shade cacao plantations), as well as trees in interiors of small and large remnants. By considering richness, abundance and composition of forest specialists and generalists, we investigated the biodiversity value of matrix habitats (comparing them with interiors of large remnants for all groups except tree), and evaluated area (for all groups) and edge effects (for all groups except trees) in mature forest remnants. our results suggest that in landscapes comprising high amounts of mature forest and low contrasting matrices: (1) shade cacao plantations and second-growth forests harbor an appreciable number of forest specialists; (2) most forest specialist assemblages are not affected by area or edge effects, while most generalist assemblages proliferate at edges of small remnants. Nevertheless, differences in tree assemblages, especially among smaller trees, Suggest that observed patterns are unlikely to be stable over time. (C) 2009 Elsevier Ltd. All rights reserved.
An improved estimate of leaf area index based on the histogram analysis of hemispherical photographs
Resumo:
Leaf area index (LAI) is a key parameter that affects the surface fluxes of energy, mass, and momentum over vegetated lands, but observational measurements are scarce, especially in remote areas with complex canopy structure. In this paper we present an indirect method to calculate the LAI based on the analyses of histograms of hemispherical photographs. The optimal threshold value (OTV), the gray-level required to separate the background (sky) and the foreground (leaves), was analytically calculated using the entropy crossover method (Sahoo, P.K., Slaaf, D.W., Albert, T.A., 1997. Threshold selection using a minimal histogram entropy difference. Optical Engineering 36(7) 1976-1981). The OTV was used to calculate the LAI using the well-known gap fraction method. This methodology was tested in two different ecosystems, including Amazon forest and pasturelands in Brazil. In general, the error between observed and calculated LAI was similar to 6%. The methodology presented is suitable for the calculation of LAI since it is responsive to sky conditions, automatic, easy to implement, faster than commercially available software, and requires less data storage. (C) 2008 Elsevier B.V. All rights reserved.