9 resultados para Fontana, Patricio
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The specialist digger wasp Trachypus boharti Rubio-Espina preys exclusively on males of the stingless bee Scaptotrigona postica Latreille 1807, although the hunting attacks involve both male and worker bees of S. postica and members of its own species. To understand the mechanism of prey selection, the cuticular hydrocarbon patterns of workers and males of S. postica are analyzed in detail, and the mandibular secretion of males is examined. The cuticular profiles of males and workers are distinctively different. The major group of cuticular compounds, heptacosene isomers, is twice as abundant in workers as in males. There is no clear distinction between worker and male mandibular secretions. Such a distinct and straightforward caste-specific difference in cuticular hydrocarbons could function as a recognition cue by which T. boharti distinguishes between workers and males of S. postica.
Resumo:
The biological activity of the proline rich decapeptde Bj PRO 10c a processing product of the C type natriuretic peptide precursor protein, expressed in the brain and the venom gland of the pit viper Bothrops jararaca, was originally attributed to the inhibition of the somatic angiotensm converting enzyme activity with subsequent ant hypertensive effect However recent results suggest broader biological activity may also be involved in the cardiovascular effects of this peptide Here we show that Bj PRO 10c enhances and sustains the generation of nitric made (NO) by regulating argininosuccinate synthase activity and thereby velocity of the citrulline NO cycle Bj PRO 10c-mediated effects not restricted to the cardiovascular system since NO production was also induced in cells of astroglial origin Bj PRO 10c was internalized by C6 astroglioma cells where it induces NO production and upregulation of the citrulline NO cycle cells in a dose dependent fashion In view of that, astroglial cells function as L arginine pool for NO production in neighboring neurons, we suggest a regulatory function for Bj PRO-10c on the metabolism of this gaseous neurotransmitter in the CNS Moreover, proliferation of astroglial cells was reduced in the presence of Bj PRO 10c however, cell death was not induced Since NO donors have been studied for the treatment of solid cancers Bj PRO 10c may serve as structural model for developing drugs to improve the effects of cancer therapy based on the peptide`s ability to augment NO production (C) 2010 Elsevier B V All rights reserved
Resumo:
The NMR spin coupling parameters, (1)J(N,H) and (2)J(H,H), and the chemical shielding, sigma((15)N), of liquid ammonia are studied from a combined and sequential QM/MM methodology. Monte Carlo simulations are performed to generate statistically uncorrelated configurations that are submitted to density functional theory calculations. Two different Lennard-Jones potentials are used in the liquid simulations. Electronic polarization is included in these two potentials via an iterative procedure with and without geometry relaxation, and the influence on the calculated properties are analyzed. B3LYP/aug-cc-pVTZ-J calculations were used to compute the V(N,H) constants in the interval of -67.8 to -63.9 Hz, depending on the theoretical model used. These can be compared with the experimental results of -61.6 Hz. For the (2)J(H,H) coupling the theoretical results vary between -10.6 to -13.01 Hz. The indirect experimental result derived from partially deuterated liquid is -11.1 Hz. Inclusion of explicit hydrogen bonded molecules gives a small but important contribution. The vapor-to-liquid shifts are also considered. This shift is calculated to be negligible for (1)J(N,H) in agreement with experiment. This is rationalized as a cancellation of the geometry relaxation and pure solvent effects. For the chemical shielding, U(15 N) Calculations at the B3LYP/aug-pcS-3 show that the vapor-to-liquid chemical shift requires the explicit use of solvent molecules. Considering only one ammonia molecule in an electrostatic embedding gives a wrong sign for the chemical shift that is corrected only with the use of explicit additional molecules. The best result calculated for the vapor to liquid chemical shift Delta sigma((15)N) is -25.2 ppm, in good agreement with the experimental value of -22.6 ppm.
Resumo:
Background and Objectives: Several studies have suggested that low-level laser therapy (LLLT) can ameliorate oral mucositis, however, the mechanisms involved are not well understood. The aim of this study was to investigate the mechanisms of action of LLLT on chemotherapy-induced oral mucositis, as related to effects on collagen expression and inflammation Materials and Methods: A hamster cheek pouch model of oral mucositis was used with all animals receiving intraperitoneal 5-fluorouracil, followed by surface irritation. Animals were randomly allocated into three groups, and treated with an InGaAIP diode laser at a wavelength of 660 nm and output power of 35 or 100 mW laser, or no laser Clinical severity of mucositis was assessed at four time-points by a blinded examiner Buccal pouch tissue was harvested from a subgroup of animals in each group at four time-points. Collagen was qualitatively and quantitatively evaluated after picrosinus staining. The density of the neutrophil infiltrate was also scored Results: Peak clinical severity of mucositis was reduced in the 35 mW laser group as compared to the 100 mW and control groups The reduced peak clinical severity of mucositis in the 35 mW laser group was accompanied by a decrease in the number of neutrophils and an increase in the proportion of mature collagen as compared to the other two groups. The total quantity of collagen was significantly higher in the control (no laser) group at the day 11 time-point, as compared to the 35 mW laser group, consistent with a more prolonged inflammatory response in the control group. Conclusion: This study supports two mechanisms of action for LLLT in reducing mucositis severity. The increase in collagen organization in response to the 35 mW laser indicates that LLLT promotes wound healing In addition, LLLT also appears to have an anti-inflammatory effect, as evidenced by the reduction in neutrophil infiltrate Lasers Surg Med 42 546-552, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
The aim of this study was to investigate the mechanisms whereby low-intensity laser therapy may affect the severity of oral mucositis. A hamster cheek pouch model of oral mucositis was used with all animals receiving intraperitoneal 5-fluorouracil followed by surface irritation. Animals were randomly allocated into three groups and treated with a 35 mW laser, 100 mW laser, or no laser. Clinical severity of mucositis was assessed at four time-points by a blinded examiner. Buccal pouch tissue was harvested from a subgroup of animals in each group at four time-points. This tissue was used for immunohistochemistry for cyclooxygenase-2 (COX-2), vascular endothelial growth factor (VEGF), and factor VIII (marker of microvessel density) and the resulting staining was quantified. Peak severity of mucositis was reduced in the 35 mW laser group as compared to the 100 mW laser and control groups. This reduced peak clinical severity of mucositis in the 35 mW laser group was accompanied by a significantly lower level of COX-2 staining. The 100 mW laser did not have an effect on the severity of clinical mucositis, but was associated with a decrease in VEGF levels at the later time-points, as compared to the other groups. There was no clear relationship of VEGF levels or microvessel density to clinical mucositis severity. The tissue response to laser therapy appears to vary by dose. Low-intensity laser therapy appears to reduce the severity of mucositis, at least in part, by reducing COX-2 levels and associated inhibition of the inflammatory response.
Resumo:
Boron compounds are widely used in synthetic chemistry. The synthesis of the compounds is relatively easy, presenting thermodynamic stability and synthetic versatility. Almost all of them show electrophilic reactivity. Recently, some boryllithium species have been reported as a base or a nucleophile in reaction with organic electrophiles in S(N)2 reactions. In the present work, the proton affinity (PA) of boryllithium compounds was calculated. These values can be useful as theoretical reference values and to provide valuable complementary information for the interpretation and discussion of the basicity of these compounds. The proton affinity was calculated using a theoretical method based on density functional theory and high-level theoretical methods through MP2 and G2MP2 levels of theory. In addition, some global and local reactivity indexes based on density functional theory (DFT) on boryllithium compounds were studied. In order to compare and discuss the chemical reactivity of these compounds, some analogues and electrophilic boron compounds were also studied. Our results showed a local and global nucleophilic reactivity of the boryllithium molecules in agreement with the experimental. reactivity. The boryllithium compounds revealed to be strong bases in comparison to other analogue compounds studied in this work.
Resumo:
We found quasinormal modes, both in time and frequency domains, of the Ernst black holes, that is neutral black holes immersed in an external magnetic field. The Ernst solution reduces to the Schwarzschild solution, when the magnetic field vanishes. It is found that the quasinormal spectrum for massless scalar field in the vicinity of the magnetized black holes acquires an effective ""mass"" mu = 2B vertical bar m vertical bar, where m is the azimuthal number and B is parameter describing the magnetic field. We shall show that in the presence of a magnetic field quasinormal modes are longer lived and have larger oscillation frequencies. The perturbations of higher-dimensional magnetized black holes by Ortaggio and of magnetized dilaton black holes by Radu are considered. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
The aim of this in vivo study was to evaluate the thermal effects caused by 810 nm 1.2 W diode laser irradiation of periodontal tissues. Despite all data available concerning the laser application for periodontal treatment, one of the most relevant challenges is to prevent the harmful tissue heating induced by different clinical protocols. Periodontal pockets were induced at molars in 96 rats. Several irradiation powers under CW mode were investigated: 0, 400, 600, 800, 1000, 1200 mW. The pockets were irradiated using a 300 A mu m frontal illumination fiber. The animals were killed at 4 or 10 days after irradiation. The mandible was surgically removed and histologically processed. The histological sections stained with H/E demonstrated that irradiation parameters up to 1000 mW were thermally safe for the periodontal tissues. The sections stained with Brown & Brenn technique evidenced bacteria in the periodontal tissues. Consequently, the diode laser irradiation as a unique treatment was not capable to eliminate bacteria of the biofilm present in the pockets. According to the methodology used here, it was concluded that the thermal variation promoted by a diode laser can cause damage to periodontal tissues depending on the energy density used. The 1.2 W diode laser irradiation itself does not control the bacteria present in the biofilm of the periodontal pockets without mechanical action. The knowledge of proper high intensity laser parameters and methods of irradiation for periodontal protocols may prevent any undesirable thermal damage to the tissues.
Resumo:
The photodynamic therapy (PDT) is a combination of using a photosensitizer agent, light and oxygen that can cause oxidative cellular damage. This technique is applied in several cases, including for microbial control. The most extensively studied light sources for this purpose are lasers and LED-based systems. Few studies treat alternative light sources based PDT. Sources which present flexibility, portability and economic advantages are of great interest. In this study, we evaluated the in vitro feasibility for the use of chemiluminescence as a PDT light source to induce Staphylococcus aureus reduction. The Photogem (R) concentration varied from 0 to 75 mu g/ml and the illumination time varied from 60 min to 240 min. The long exposure time was necessary due to the low irradiance achieved with chemiluminescence reaction at mu W/cm(2) level. The results demonstrated an effective microbial reduction of around 98% for the highest photosensitizer concentration and light dose. These data suggest the potential use of chemiluminescence as a light source for PDT microbial control, with advantages in terms of flexibility, when compared with conventional sources. (C) 2011 Elsevier B.V. All rights reserved.