133 resultados para Folate Receptor 2
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Ticks (Acari: Ixodidae) are bloodsucking ectoparasitic arthropods of human and veterinary medical importance. Tick saliva has been shown to contain a wide range of bioactive molecules with vasodilatory, antihemostatic, and immunomodulatory activities. We have previously demonstrated that saliva from Rhipicephalus sanguineus ticks inhibits the maturation of dendritic cells (DCs) stimulated with LPS. Here we examined the mechanism of this immune subversion, evaluating the effect of tick saliva on Toll-like receptor (TLR)-4 signalling pathway in bone marrow-derived DCs. We demonstrated that R. sanguineus tick saliva impairs maturation of DCs stimulated with LIPS, a TLR-4 ligand, leading to increased production of interleukin (IL)-10 and reduced synthesis of IL-12p70 and TNF-alpha. The immunomodulatory effect of the tick saliva on the production of pro-inflammatory cytokines by DCs stimulated with LPS was associated with the observation that tick saliva inhibits the activation of the ERK 1/2 and p38 MAP kinases. These effects were independent of the expression of TLR-4 on the surface of DCs. Additionally, saliva-treated DCs also presented a similar pattern of cytokine modulation in response to other TLR ligands. Since the recent literature reports that several parasites evade immune responses through TLR-2-mediated production of IL-10, we evaluated the effect of tick saliva on the percentage of TLR-2(+) DCs stimulated with the TLR-2 ligand lipoteicoic acid (LTA). The data showed that the population of DCs expressing TLR-2 was significantly increased in DCs treated with LTA plus saliva. In addition, tick saliva alone increased the expression of TLR-2 in a dose- and time-dependent manner. Our data suggest that tick saliva induces regulatory DCs, which secrete IL-10 and low levels of IL-12 and TNF-alpha when stimulated by TLR ligands. Such regulatory DCs are associated with expression of TLR-2 and inhibition of ERK and p38, which promotes the production of IL-10 and thus down-modulates the host`s immune response, possibly favouring susceptibility to tick infestations. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The human airway epithelium is constantly exposed to microbial products from colonizing organisms. Regulation of Toll-like receptor (TLR) expression and specific interactions with bacterial ligands is thought to mitigate exacerbation of inflammatory processes induced by the commensal flora in these cells. The genus Neisseria comprises pathogenic and commensal organisms that colonize the human nasopharynx. Neisseria lactamica is not associated with disease, but N. meningitidis occasionally invades the host, causing meningococcal disease and septicemia. Upon colonization of the airway epithelium, specific host cell receptors interact with numerous Neisseria components, including the PorB porin, at the immediate bacterial-host cell interface. This major outer membrane protein is expressed by all Neisseria strains, regardless of pathogenicity, but its amino acid sequence varies among strains, particularly in the surface-exposed regions. The interaction of Neisseria PorB with TLR2 is essential for driving TLR2/TLR1-dependent cellular responses and is thought to occur via the porin`s surface-exposed loop regions. Our studies show that N. lactamica PorB is a TLR2 ligand but its binding specificity for TLR2 is different from that of meningococcal PorB. Furthermore, N. lactamica PorB is a poor inducer of proinflammatory mediators and of TLR2 expression in human airway epithelial cells. These effects are reproduced by whole N. lactamica organisms. Since the responsiveness of human airway epithelial cells to colonizing bacteria is in part regulated via TLR2 expression and signaling, commensal organisms such as N. lactamica would benefit from expressing a product that induces low TLR2-dependent local inflammation, likely delaying or avoiding clearance by the host.
Resumo:
KM+ is a mannose-binding lectin from Artocarpus integrifolia that induces interleukin (IL)-12 production by macrophages and protective T helper I immune response against Leishmania major infection. in this study, we performed experiments to evaluate the therapeutic activity of jackfruit KM+ (jfKM(+)) and its recombinant counterpart (rKM(+)) in experimental paracoccidioidomycosis. To this end, jfKM(+) or rKM(+) was administered to BALB/c mice 10 days after infection with Paracoccidiodes brasiliensis. Thirty days postinfection, lungs from the KM+-treated mice contained significantly fewer colony-forming units and little to no organized granulomas compared to the controls. In addition, lung homogenates from the KM+-treated mice presented higher levels of nitric oxide, IL-12, interferon-gamma, and tumor necrosis factor-a, whereas higher levels of IL-4 and IL-10 were detected in the control group. With mice deficient in IL-12, Toll-like receptor (TLR) 2, TLR4, or TLR adaptor molecule MyD88, we demonstrated that KM+ led to protection against P. brasiliensis infection through IL-12 production, which was dependent on TLR2. These results demonstrated a beneficial effect of KM+ on the severity of P. brasiliensis infection and may expand its potential use as a novel immunotherapeutic molecule.
Resumo:
Increased pro-inflammatory state has been implicated in the pathophysiology of major depressive disorder. The aim of this study was to determine serum levels of INF-alpha and soluble TNF-alpha receptors 1 and 2 (sTNFR1 and sTNFR2) in anti-depressant free depressed elderly patients as compared to healthy controls. Sixty-seven older adults (28 with major depression and 39 controls) were enrolled to this study. Participants were assessed by the SCID and diagnosis of major depressive episode was made according to the DSM-IV criteria. Serum INF-alpha, 5TNFR1 and sTNFR2 were determined by ELISA. Anti-depressant free patients with late-life depression showed an increased level of the sTNFR2 as compared to controls (p = 0.03). No significant differences were found in serum INF-alpha and sTNFR1 levels (p = 0.1 and p = 0.4, respectively). There was no correlation between serum levels of these inflammatory markers and the severity of depression. Our findings provide additional evidence of the involvement of abnormal pro-inflammatory state in late-life depression. (c) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Context: Physiological activation of the prokineticin pathway has a critical role in olfactory bulb morphogenesis and GnRH secretion in mice. Objective: To investigate PROK2 and PROKR2 mutations in patients with hypogonadotropic hypogonadism (HH) associated or not with olfactory abnormalities. Design: We studied 107 Brazilian patients with HH (63 with Kallmann syndrome and 44 with normosmic HH) and 100 control individuals. The coding regions of PROK2 and PROKR2 were amplified by PCR followed by direct automatic sequencing. Results: In PROK2, two known frameshift mutations were identified. Two brothers with Kallmann syndrome harbored the homozygous p. G100fsX121 mutation, whereas one male with normosmic HH harbored the heterozygous p. I55fsX56 mutation. In PROKR2, four distinct mutations (p. R80C, p. Y140X, p. L173R, and p. R268C) were identified in five patients with Kallmann syndrome and in one patient with normosmic HH. These mutations were not found in the control group. The p. R80C, p. L173R, and p. R268C missense mutations were identified in the heterozygous state in the HH patients and in their asymptomatic first-degree relatives. In addition, nomutations of FGFR1, KAL1, GnRHR, KiSS-1, or GPR54 were identified in these patients. Notably, the new nonsense mutation (p. Y140X) was identified in the homozygous state in an anosmic boy with micropenis, bilateral cryptorchidism, and high-arched palate. His asymptomatic parents were heterozygous for this severe defect. Conclusion: We expanded the repertoire of PROK2 and PROKR2 mutations in patients with HH. In addition, we show that PROKR2 haploinsufficiency is not sufficient to cause Kallmann syndrome or normosmic HH, whereas homozygous loss-of-function mutations either in PROKR2 or PROK2 are sufficient to cause disease phenotype, in accordance with the Prokr2 and Prok2 knockout mouse models.
Resumo:
Patients with sepsis have a marked defect in neutrophil migration. Here we identify a key role of Toll-like receptor 2 (TLR2) in the regulation of neutrophil migration and resistance during polymicrobial sepsis. We found that the expression of the chemokine receptor CXCR2 was dramatically down-regulated in circulating neutrophils from WT mice with severe sepsis, which correlates with reduced chemotaxis to CXCL2 in vitro and impaired migration into an infectious focus in vivo. TLR2 deficiency prevented the down-regulation of CXCR2 and failure of neutrophil migration. Moreover, TLR2(-/-) mice exhibited higher bacterial clearance, lower serum inflammatory cytokines, and improved survival rate during severe sepsis compared with WT mice. In vitro, the TLR2 agonist lipoteichoic acid (LTA) down-regulated CXCR2 expression and markedly inhibited the neutrophil chemotaxis and actin polymerization induced by CXCL2. Moreover, neutrophils activated ex vivo by LTA and adoptively transferred into naive WT recipient mice displayed a significantly reduced competence to migrate toward thioglycolate-induced peritonitis. Finally, LTA enhanced the expression of G protein-coupled receptor kinases 2 (GRK2) in neutrophils; increased expression of GRK2 was seen in blood neutrophils from WT mice, but not TLR2(-/-) mice, with severe sepsis. Our findings identify an unexpected detrimental role of TLR2 in polymicrobial sepsis and suggest that inhibition of TLR2 signaling may improve survival from sepsis.
Resumo:
Neospora caninum is an apicomplexan parasite responsible for major economic losses due to abortions in cattle. Toll-like receptors (TLRs) sense specific microbial products and direct downstream signaling pathways in immune cells, linking innate, and adaptive immunity. Here, we analyze the role of TLR2 on innate and adaptive immune responses during N. caninum infection. Inflammatory peritoneal macrophages and bone marrow-derived dendritic cells exposed to N. caninum-soluble antigens presented an upregulated expression of TLR2. Increased receptor expression was correlated to TLR2/MyD88-dependent antigen-presenting cell maturation and pro-inflammatory cytokine production after stimulation by antigens. Impaired innate responses observed after infection of mice genetically deficient for TLR2((-/-)) was followed by downregulation of adaptive T helper 1 (Th1) immunity, represented by diminished parasite-specific CD4(+) and CD8(+) T-cell proliferation, IFN-gamma:interleukin (IL)-10 ratio, and IgG subclass synthesis. In parallel, TLR2(-/-) mice presented higher parasite burden than wild-type (WT) mice at acute and chronic stages of infection. These results show that initial recognition of N. caninum by TLR2 participates in the generation of effector immune responses against N. caninum and imply that the receptor may be a target for future prophylactic strategies against neosporosis. Immunology and Cell Biology (2010) 88, 825-833; doi:10.1038/icb.2010.52; published online 20 April 2010
Resumo:
Background: Aggregatibacter actinomycetemcomitans (previously Actinobacillus actinomycetemcomitans) is a Gram-negative bacterium present in the oral cavity and is usually associated with localized aggressive periodontitis. Isolated antigens from A. actinomycetemcomitans can activate innate immune cells through Toll-like receptors (TLRs), which are molecules that recognize structural components conserved among microorganisms. In this study, we evaluate the role of TLR2 in the recognition of A. actinomycetemcomitans. Methods: Macrophages and neutrophils from knockout mice with targeted disruption of TLR2 (TLR2(-/-) mice) and wild-type mice were collected and used for the subsequent assays. The production of cytokines and chemokines was evaluated by enzyme-linked immunosorbent assay (ELISA), and the presence of apoptotic cells was determined by flow cytometry. In addition, the mechanisms that modulate the outcome of A. actinomycetemcomitans-induced periodontal disease in TLR2(-/-) mice were examined. Results: The results show that TLR2-deficient mice developed more severe periodontitis after A. actinomycetemcomitans infection, characterized by significantly higher bone loss and inflammatory cell migration to periodontal tissues. The inflammatory cell influx into the peritoneal cavities of TLR2(-/-) mice was three-fold lower than that observed for the littermate controls. A significantly diminished production of the cytokines tumor necrosis factor-alpha and interleukin-1 beta as well as the chemokine CC-ligand-5 in the peritoneal cavities of TLR2(-/-) mice was observed. In addition, a high frequency of apoptotic cells in the inflammatory exudates from TLR2(-/-) mice was observed. Phagocytosis and nitric oxide production was diminished in cells from TLR2(-/-) mice, facilitating the dissemination of the pathogen to the spleen. Conclusion: The results of this study highlight the involvement of TLR2 in recognizing A. actinomycetemcomitans and its essential role in controlling A. actinomycetemcomitans infection. J Periodontot 2009,80:2070-2019.
Resumo:
No evidence for the role of protease-activated receptor-2 (PAR(2)) in human periodontal disease has been demonstrated so far. Thus, we sought to investigate the expression of PAR(2) mRNA in chronic periodontitis, and to examine whether its expression is related to the presence of PAR(2) potential activators. Microbiological and gingival crevicular fluid samples were collected from individuals with chronic periodontitis and control individuals, and the presence of neutrophil serine proteinase 3 (P3) and Porphyromonas gingivalis was evaluated. PAR(2) mRNA expression was higher (p < 0.001) in those with chronic periodontitis compared with control individuals, and it was statistically decreased (p = 0.0006) after periodontal treatment. Furthermore, those with chronic periodontitis presented higher (p < 0.05) levels of IL-1 alpha, IL-6, IL-8, and TNF-alpha, total proteolytic activity, P. gingivalis prevalence, and P3mRNA expression compared with control individuals. We conclude that PAR(2) mRNA expression and its potential activators are elevated in human chronic periodontitis, therefore suggesting that PAR(2) may play a role in periodontal inflammation.
Resumo:
The higher frequency of triple-negative and HER-2-positive tumors detected in younger patients has been suggested as an explanation for the more aggressive tumor types observed in this age group. However, estrogen receptor (ER)-positive tumors are the most frequent subtype of breast carcinomas identified, even in younger patients. In this retrospective study, the morphological and immunohistochemical profiles of ER-positive breast carcinomas from women 35 yrs and younger that were diagnosed between 1997 and 2007 were evaluated. From these cases, 213 were selected based on the availability of pathology reports and paraffin blocks. For comparison, 117 consecutive cases of breast carcinomas diagnosed in patients >60 yrs from 2006 were included. Paraffin-embedded tumors were stained for expression of ER, progesterone receptor (PR), human epidermal growth factor receptor 2 (HER-2). Ki-67 antigen, epidermal growth factor receptor (EGFR), cytokeratin 5/6, p53, vimentin, CD117, and p63 using tissue microarrays. ER-positive carcinomas were diagnosed in 120 (56.1%) samples of the younger patient group and in 92 (78.6%) samples of the older patient group. Of these ER-positive carcinomas, 48 (40%) from the younger patient group presented the subtype luminal A, compared with 53 (57.6%) from the older patient group (p=0.01). Tumors from the younger patient group were also associated with increased vascular involvement, co-expression of HER-2, and decreased expression of CD117. These results highlight differences in expression markers and the pathology of ER-positive tumors detected in younger women, with a notable characteristic being co-expression of HER-2. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Toll-like receptors (TLR) are membrane proteins that recognize conserved molecules derived from bacterial, virus, fungal or host tissues. Activation of TLRs causes the production of cytokines that mediate inflammatory responses and drive T helper (Th) 1 and 2 cell development. As an exaggerated Th1 immune response is supposed to be involved in pathogenesis of Recurrent Aphthous Ulceration (RAU), we suggest that RAU patients may have an imbalance in TLR pathways. To study the function of TLR activation ex vivo, peripheral blood mononuclear cells (PBMCs) from RAU patients (n = 17) and controls (n = 17) were exposed to TLR2 [lipoteichoic acid (LTA), heat-killed Listeria monocytogenes (HKLM) and PamC3CSK4], TLR3 [Poly(I:C)], TLR4 [lipopolysaccharide (LPS)], TLR5 (flagellin) and TLR7 (imiquimod) ligands, and the time course of supernatant tumor necrosis factor-alpha (TNF-alpha) levels was quantified by enzyme-linked immunosorbent assay. In addition, serological and salivary TNF-alpha and soluble CD14 levels were quantified. The TNF-alpha produced by PBMCs in contact with each TLR ligand and autologous serum or saliva at the same time was also investigated. The data were analyzed by statistical multivariate tests. The control group had a higher response to LTA, whereas RAU had a higher response to HKLM. LTA and LPS interfered with the salivary stimulation of the RAU PBMC and HKLM with the stimulation of the control. Autologous serum was capable of inhibiting TLR2 responsiveness to LTA and enhancing LPS stimulation. Salivary and serological levels of sCD14 and TNF-alpha were not significantly different. Recurrent Aphthous Ulceration patients have an anomalous activity of the TLR2 pathway that probably influences the stimulation of an abnormal Th1 immune response.
Resumo:
The proteinase-activated receptor 2 (PAR(2)) is a putative therapeutic target for arthritis. We hypothesized that the early pro-inflammatory effects secondary to its activation in the temporomandibular joint (TMJ) are mediated by neurogenic mechanisms. Immunofluorescence analysis revealed a high degree of neurons expressing PAR(2) in retrogradely labeled trigeminal ganglion neurons. Furthermore, PAR(2) immunoreactivity was observed in the lining layer of the TMJ, co-localizing with the neuronal marker PGP9.5 and substance-P-containing peripheral sensory nerve fibers. The intra-articular injection of PAR(2) agonists into the TMJ triggered a dose-dependent increase in plasma extravasation, neutrophil influx, and induction of mechanical allodynia. The pharmacological blockade of natural killer 1 (NK(1)) receptors abolished PAR(2)-induced plasma extravasation and inhibited neutrophil influx and mechanical allodynia. We conclude that PAR(2) activation is proinflammatory in the TMJ, through a neurogenic mechanism involving NK(1) receptors. This suggests that PAR(2) is an important component of innate neuro-immune response in the rat TMJ.
Resumo:
Interleukin-22 (IL-22) plays an important role in the regulation of immune and inflammatory responses in mammals. The IL-22 binding protein (IL-22BP), a soluble receptor that specifically binds IL-22, prevents the IL-22/interleukin-22 receptor 1 (IL-22R1)/interleukin-10 receptor 2 (IL-10R2) complex assembly and blocks IL-22 biological activity. Here we present the crystal structure of the IL-22/IL-22BP complex at 2.75 angstrom resolution. The structure reveals IL-22BP residues critical for IL-22 binding, which were confirmed by site-directed mutagenesis and functional studies. Comparison of IL-22/IL-22BP and IL-22/IL-22R1 crystal structures shows that both receptors display an overlapping IL-22 binding surface, which is consistent with the inhibitory role played by IL-22 binding protein.
Resumo:
Background: p.C282Y mutation and rare variants in the HFE gene have been associated with hereditary hemochromatosis (HH). HH is also caused by mutations in other genes, such as the hemojuvelin (HJV), hepcidin (HAMP), transferrin receptor 2 (TFR2) and ferroportin (SLC40A1). The low rate homozygous p.C282Y mutation in Brazil is suggestive that mutations in non-HFE genes may be linked to HH phenotype. Aim: To screen exon-by-exon DNA sequences of HFE, HJV, HAMP, TFR2 and SLC40A1 genes to characterize the molecular basis of HH in a sample of the Brazilian population. Materials and methods: Fifty-one patients with primary iron overload (transferrin saturation >= 50% in females and >= 60% in males) were selected. Subsequent bidirectional DNA sequencing of HFE, HJV, HAMP, TFR2 and SLC40A1 exons was performed. Results: Thirty-seven (72.5%) out of the 51 patients presented at least one HFE mutation. The most frequent genotype associated with HH was the homozygous p.C282Y mutation (n = 11, 21.6%). In addition, heterozygous HFE p.S65C mutation was found in combination with p.H63D in two patients and homozygous HFE p.H63D was found in two patients as well. Sequencing in the HJV and HAMP genes revealed HJV p.E302K, HJV p.A310G, HJV p.G320V and HAMP p.R59G alterations. Molecular and clinical diagnosis of juvenile hemochromatosis (homozygous form for the HJV p.G320V) was described for the first time in Brazil. Three TFR2 polymorphisms (p.A75V, p.A617A and p.R752H) and six SLC40A1 polymorphisms (rs13008848, rs11568351, rs11568345, rs11568344, rs2304704, rs11568346) and the novel mutation SLC40A1 p.G204S were also found. Conclusions: The HE p.C282Y in homozygosity or in heterozygosity with p.H63D was the most frequent mutation associated with HH in this sample. The HJV p.E302K and HAMP p.R59G variants, and the novel SLC40A1 p.G2045 mutation may also be linked to primary iron overload but their role in the pathophysiology of HH remain to be elucidated. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The immune response to infection by dermatophytes ranges from a non-specific host mechanism to a humoral and cell-mediated immune response. The currently accepted view is that a cell-mediated immune response is responsible for the control of dermatophytosis. Indeed, some individuals develop a chronic or recurrent infection mediated by the suppression of a cell-mediated immune response. The immune response to Trichophyton is unusual in that this fungus can elicit both immediate hypersensitivity (IH) and delayed-type hypersensitivity (DTH) in different individuals when they are submitted to a skin test reaction. Understanding the nature and function of the immune response to dermatophytes is an exciting challenge that might lead to novel approaches in the treatment and immunological prophylaxis of dermatophytosis.