3 resultados para Flow Vector Tracking

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Extensive population structuring is known to occur in Anopheles darlingi, the primary malaria vector of the Neotropics. We analysed the phylogeographic structure of the species using the mitochondrial cytochrome oxidase I marker. Diversity is divided into six main population groups in South America: Colombia, central Amazonia, southern Brazil, south-eastern Brazil, and two groups in north-east Brazil. The ancestral distribution of the taxon is hypothesized to be central Amazonia, and there is evidence of expansion from this region during the late Pleistocene. The expansion was not a homogeneous front, however, with at least four subgroups being formed due to geographic barriers. As the species spread, populations became isolated from each other by the Amazon River and the coastal mountain ranges of south-eastern Brazil and the Andes. Analyses incorporating distances around these barriers suggest that the entire South American range of An. darlingi is at mutation-dispersal-drift equilibrium. Because the species is distributed throughout such a broad area, the limited dispersal across some landscape types promotes differentiation between otherwise proximate populations. Moreover, samples from the An. darlingi holotype location in Rio de Janeiro State are substantially derived from all other populations, implying that there may be additional genetic differences of epidemiological relevance. The results obtained contribute to our understanding of gene flow in this species and allow the formulation of human mosquito health protocols in light of the potential population differences in vector capacity or tolerance to control strategies. (C) 2009 The Linnean Society of London, Biological Journal of the Linnean Society, 2009, 97, 854-866.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We introduce a flexible technique for interactive exploration of vector field data through classification derived from user-specified feature templates. Our method is founded on the observation that, while similar features within the vector field may be spatially disparate, they share similar neighborhood characteristics. Users generate feature-based visualizations by interactively highlighting well-accepted and domain specific representative feature points. Feature exploration begins with the computation of attributes that describe the neighborhood of each sample within the input vector field. Compilation of these attributes forms a representation of the vector field samples in the attribute space. We project the attribute points onto the canonical 2D plane to enable interactive exploration of the vector field using a painting interface. The projection encodes the similarities between vector field points within the distances computed between their associated attribute points. The proposed method is performed at interactive rates for enhanced user experience and is completely flexible as showcased by the simultaneous identification of diverse feature types.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We present a variable time step, fully adaptive in space, hybrid method for the accurate simulation of incompressible two-phase flows in the presence of surface tension in two dimensions. The method is based on the hybrid level set/front-tracking approach proposed in [H. D. Ceniceros and A. M. Roma, J. Comput. Phys., 205, 391400, 2005]. Geometric, interfacial quantities are computed from front-tracking via the immersed-boundary setting while the signed distance (level set) function, which is evaluated fast and to machine precision, is used as a fluid indicator. The surface tension force is obtained by employing the mixed Eulerian/Lagrangian representation introduced in [S. Shin, S. I. Abdel-Khalik, V. Daru and D. Juric, J. Comput. Phys., 203, 493-516, 2005] whose success for greatly reducing parasitic currents has been demonstrated. The use of our accurate fluid indicator together with effective Lagrangian marker control enhance this parasitic current reduction by several orders of magnitude. To resolve accurately and efficiently sharp gradients and salient flow features we employ dynamic, adaptive mesh refinements. This spatial adaption is used in concert with a dynamic control of the distribution of the Lagrangian nodes along the fluid interface and a variable time step, linearly implicit time integration scheme. We present numerical examples designed to test the capabilities and performance of the proposed approach as well as three applications: the long-time evolution of a fluid interface undergoing Rayleigh-Taylor instability, an example of bubble ascending dynamics, and a drop impacting on a free interface whose dynamics we compare with both existing numerical and experimental data.