9 resultados para Final state
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
We evaluate the non-resonant decay amplitude of the process B(+/-) -> K(+/-)pi(+)pi(-) using an approach based on final state hadronic interactions described in terms of meson exchanges. We conclude that this mechanism generates inhomogeneities in the Dalitz plot of the B decay. (C) 2008 Published by Elsevier B.V.
Resumo:
The diffusion of astrophysical magnetic fields in conducting fluids in the presence of turbulence depends on whether magnetic fields can change their topology via reconnection in highly conducting media. Recent progress in understanding fast magnetic reconnection in the presence of turbulence reassures that the magnetic field behavior in computer simulations and turbulent astrophysical environments is similar, as far as magnetic reconnection is concerned. This makes it meaningful to perform MHD simulations of turbulent flows in order to understand the diffusion of magnetic field in astrophysical environments. Our studies of magnetic field diffusion in turbulent medium reveal interesting new phenomena. First of all, our three-dimensional MHD simulations initiated with anti-correlating magnetic field and gaseous density exhibit at later times a de-correlation of the magnetic field and density, which corresponds well to the observations of the interstellar media. While earlier studies stressed the role of either ambipolar diffusion or time-dependent turbulent fluctuations for de-correlating magnetic field and density, we get the effect of permanent de-correlation with one fluid code, i.e., without invoking ambipolar diffusion. In addition, in the presence of gravity and turbulence, our three-dimensional simulations show the decrease of the magnetic flux-to-mass ratio as the gaseous density at the center of the gravitational potential increases. We observe this effect both in the situations when we start with equilibrium distributions of gas and magnetic field and when we follow the evolution of collapsing dynamically unstable configurations. Thus, the process of turbulent magnetic field removal should be applicable both to quasi-static subcritical molecular clouds and cores and violently collapsing supercritical entities. The increase of the gravitational potential as well as the magnetization of the gas increases the segregation of the mass and magnetic flux in the saturated final state of the simulations, supporting the notion that the reconnection-enabled diffusivity relaxes the magnetic field + gas system in the gravitational field to its minimal energy state. This effect is expected to play an important role in star formation, from its initial stages of concentrating interstellar gas to the final stages of the accretion to the forming protostar. In addition, we benchmark our codes by studying the heat transfer in magnetized compressible fluids and confirm the high rates of turbulent advection of heat obtained in an earlier study.
Resumo:
To comprehend the recent Brookhaven National Laboratory experiment E788 on (4)(Lambda)He, we have outlined a simple theoretical framework. based on the independent-particle shell model, for the one-nucleon-induced nonmesonic weak decay spectra. Basically, the shapes of all the spectra are tailored by the kinematics of the corresponding phase space, depending very weakly on the dynamics, which is gauged here by the one-meson-exchange potential. In spite of the straightforwardness of the approach a good agreement with data is achieved. This might be an indication that the final-state-interactions and the two-nucleon induced processes are not very important in the decay of this hypernucleus. We have also found that the pi + K exchange potential with soft vertex-form-factor cutoffs (Lambda(pi) approximate to 0.7 GeV, Lambda(K) approximate to 0.9 GeV), is able to account simultaneously for the available experimental data related to Gamma(p) and Gamma(n) for (4)(Lambda)H, (4)(Lambda)H, and (5)(Lambda)H. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
We study the effects of final state interactions in two-proton emission by nuclei. Our approach is based on the solution the time-dependent Schrodinger equation. We show that the final relative energy between the protons is substantially influenced by the final state interactions. We also show that alternative correlation functions can be constructed showing large sensitivity to the spin of the diproton system. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
We propose a model for the antihyperon polarization in high-energy proton-nucleus inclusive reactions, based on the final-state interactions between the antihyperons and other produced particles (predominantly pions). To formulate this idea, we use the previously obtained low-energy pion-(anti-)hyperon interaction using effective chiral Lagrangians, and a hydrodynamic parametrization of the background matter, which expands and decouples at a certain freezeout temperature.
Resumo:
alpha-d coincidence data are studied for the (6)Li + (59)Co reaction at E(lab) = 29.6 MeV. A kinematic analysis is used to identify which process, leading to the same final state, has the major contribution for selected angular regions. The contributions of the (6)Li sequential and direct breakup to the incomplete fusion/transfer process is discussed by considering the corresponding lifetimes obtained by using a semiclassical approach.
Resumo:
Mathematical models, as instruments for understanding the workings of nature, are a traditional tool of physics, but they also play an ever increasing role in biology - in the description of fundamental processes as well as that of complex systems. In this review, the authors discuss two examples of the application of group theoretical methods, which constitute the mathematical discipline for a quantitative description of the idea of symmetry, to genetics. The first one appears, in the form of a pseudo-orthogonal (Lorentz like) symmetry, in the stochastic modelling of what may be regarded as the simplest possible example of a genetic network and, hopefully, a building block for more complicated ones: a single self-interacting or externally regulated gene with only two possible states: ` on` and ` off`. The second is the algebraic approach to the evolution of the genetic code, according to which the current code results from a dynamical symmetry breaking process, starting out from an initial state of complete symmetry and ending in the presently observed final state of low symmetry. In both cases, symmetry plays a decisive role: in the first, it is a characteristic feature of the dynamics of the gene switch and its decay to equilibrium, whereas in the second, it provides the guidelines for the evolution of the coding rules.
Resumo:
Fluorene and thiophene units are commonly used in polymeric materials for electro-optical applications. Due to differences in reactivity, the final composition of polymers containing these components often differs from that used in their preparation. This contribution describes the synthesis of PPV type terpolymers built by fluorene, phenylene and thiophene units and their quantification by CPMAS NMR. The similarity of the three aromatic co-monomers makes it difficult to separate the analytical responses that would allow quantification of each copolymer unit in the chain. In this sense, we show that the combination of dipolar dephased CPMAS with radiofrequency ramp and proper spectral treatment allows a good estimation and quantification of the copolymer constitution. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Lycopodiopsis derbyi Renault was analyzed on the basis of compressed silicified stems from four Guadalupian outcrops of the Parana Basin (Corumbatai Formation) in the State of Sao Paulo, Southern Brazil. Dichotomous stems have been recorded, and three different branch regions related to apoxogenesis are described. The most proximal region has larger, clearly rhomboidal leaf cushions, with protruding upper edges; the intermediate transitional region also has rhombic leaf cushions, but they are smaller and less elongated than the lower in the same axis; finally, the most distal region reveals only incipient cushions, with inconspicuous infrafoliar bladders; interspersed microphylls were still attached. A well preserved branch representative of this most distal region was sectioned; it has a siphonostelic cylinder similar to that previously described for L derbyi. The cortex, however, shows new traits, such as a short portion of elongated cells between the periderm and the external cortex (or leaf cushion tissue). The stems were apparently silicified prior to their final burial but were probably not transported for long distances. Their final burial may have taken place during storm events, which were common during the deposition of the Corumbatai Formation. These stems are commonly deformed due to compression, mainly because the internal cortical portions rapidly decayed prior to silicification due to their thin-walled tissue, and are therefore not preserved. The common alkalinity of a shallow marine environment such as that in which the Corumbatai Formation was deposited, should mobilize the silica and favors petrifaction. Based on the new data, an emended diagnosis is proposed and a modification of the identification key published by Thomas and Meyen in 1984 for Upper Paleozoic Lycopsida is suggested. (C) 2009 Elsevier B.V. All rights reserved.