9 resultados para Filogenética
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Croton is the second bigger and more diverse genus in the family Euphorbiaceae, with about 1,200 species distributed in 40 sections, occurring in all tropical areas, most of them in Americas. In South America, Brazil is the country in which a larger number of taxa are found, ca. 356. According to recent classification, the genus belongs to the tribe Crotoneae, and despite the wide and morphological diversity, it would be a monophyletic taxon. However, a phylogenetic analysis using markers of ITS region from nuclear ribosomal DNA, and of trnL-F from plastidial DNA, showed that Croton, like traditionally circumscribed, is not a monophyletic taxon. A taxonomic revision of Croton section Lamprocroton (Müll. Arg.) Pax is presented here. It is a Neotropical group with most of its species occurring from Southeast and South Brazil to southern South America (Uruguay and Argentina). Morphologically, the members of Lamprocroton are characterized as monoecious or dioecious shrubs or subshrubs, with a lepidote indumentum at least in part of foliage, entire leaves with no glands. The staminate flowers have 9 to 16 stamens and the pistillate flowers may have equal or unequal sepals, reduced to absent petals, and styles once or twice bifid. Overall, are recognized 26 species in the group, three of them new to the science. Identification key, morphological descriptions, illustrations, phenological period, as well as data on geographic distribution and general comments of each species are presented. Four taxa were excluded from C. sect. Lamprocroton because they do not show the morphological features that are diagnostics of the section. Four species that are poorly known were not included in the taxonomic treatment.
Resumo:
The taxonomic revision of the genus Lamontichthys Miranda-Ribeiro, based on the examination of 164 specimens of different river drainages throughout the Amazon basin, revealed the presence of six species of which two are new. Lamontichthys filamentosus occurs in the upper and middle portions of the rio Amazonas basin; L. llanero in the río Orinoco basin; L. maracaibero in the lago Maracaibo basin; and L. stibaros in the upper río Amazonas basin. Lamontichthys avacanoeiro, new species, occurs in the upper rio Tocantins basin; and L. parakana, new species, in the lower rio Tocantins basin. The new species represent a considerable extension in the so far known distribution of the genus. A parsimony analysis, including 87 osteological and external morphological characters from Lamontichthys and related taxa (total of 16), resulted in three most parsimonious trees with 194 steps (CI = 0.73 and RI = 0.78). The hypothesis of monophyly of Lamontichthys is corroborated and supported by six derived characters. Within Lamontichthys two monophyletic assemblages are recognized, one includes L. avacanoeiro and L. stibaros, the other includes L. maracaibero and the clade formed by L. filamentosus and L. llanero. The relationships of Lamontichthys parakana, a species that was not included in the phylogenetic analysis is discussed. The monophyly and relationships of the monotypic genus Pterosturisoma microps are also discussed.
Resumo:
O trabalho busca integrar, com base em propostas recentes de vários autores, perspectivas acerca da aprendizagem concebidas como mutuamente excludentes. Essa reflexão se justifica em vista da importância de não se introduzir descontinuidade filogenética em um processo concebido como adaptativo, mas que é também cultural. Assim, são examinadas propostas acerca da coevolução da mente humana e da cultura que apoiariam tal perspectiva, propondo-se uma visão integrada da aprendizagem como um conjunto de processos organizados em um continuum implícito-explícito.
Resumo:
A new species of sand-dwelling catfish genus Pygidianops, P. amphioxus, is described from the Negro and lower Amazon basins. The new species differs from its three congeners in the elongate eel-like body, the short barbels, and the small caudal fin, continuous with the body, among other traits of internal anatomy. The absence of anal fin further distinguishes P. amphioxus from all other Pygidianops species except P. magoi and the presence of eyes from all except P. cuao. The new Pygidianops seems to be the sister species to P. magoi, the two species sharing a unique mesethmoid with a dorsally-bent tip lacking cornua, and a produced articular process in the palatine for the articulation with the neurocranium. Pygidianops amphioxus is a permanent and highly-specialized inhabitant of psammic environments. Additional characters are proposed as synapomorphies of Pygidianops, including a hypertrophied symphyseal joint and associated ligament in the lower jaw; an elongate, laterally-directed, process on the dorsal surface of the premaxilla; and a rotated lower jaw, where the surface normally facing laterally in other glanapterygines is instead directed ventrally. These and other characters are incorporated into a revised phylogenetic diagnosis of Pygidianops.
Resumo:
This study deals with detailed morphology and anatomy of 4 species of Scaphopoda and 5 species of protobranch Bivalvia. Both classes are traditionally grouped in the taxon Diasoma, which has been questioned by different methodologies, such as molecular and developmental. This study is developed under a phylogenetic methodology with the main concern in performing it in an intelligible and testable methodology. The analyzed Scaphopoda species came from the Brazilian coast and belong to the family Dentaliidae [(1) Coccodentalium carduus; (2) Paradentalium disparile] and Gadiliidae; [(3) Polyschides noronhensis, n. sp. from Fernando de Noronha Archipelago; (4) Gadila braziliensis]. These species represent the main branches of the class Scaphopoda. From protobranch bivalves, representatives of the families Solemyidae [(5) Solemya occidentalis, from Florida; S. notialis, n. sp. from S.E. Brazil], Nuculanidae [(6) Propeleda carpentieri from Florida], and Nuculidae [(7) Ennucula puelcha, from south Brazil] are included. These species represent the main branches of the basal Bivalvia. The descriptions on the anatomy of S. occidentalis and of P. carpentieri are published elsewhere. The remaining are included here, for which a complete taxonomical treatment is performed. Beyond these species, representatives of other taxa are operationally included as part of the ingroup (indices are then shared with them), as a procedure to test the morphological monophyly of Diasoma. These taxa are: two lamellibranch bivalves [(8) Barbatia - Arcidae; (9) Serratina - Tellinidae; both published elsewhere;, and Propilidium (10) Patellogastropoda, and (11) Nautilus, basal Cephalopoda, based on basal taxa. The effective outgroups are (12) Neopilina (Monoplacophora) and (13) Hanleya (Polyplacophora). The phylogenetic analysis based on morphology revealed that the taxon Diasoma is supported by 14 synapomorphies, and is separated from Cyrtosoma (Gastropoda + Cephalopoda). Although they are not the main goal of this paper, the taxa Scaphopoda and Bivalvia are supported by 8 and by 7 synapomorphies respectively. The taxon Protobranchia resulted paraphyletic. Both scaphopod orders resulted monophyletic. The obtained cladogram is: ((((Coccodentalium carduus - Paradentalium disparile) (Polyschides noronhensis - Gadila brasiliensis)) ((Solemya occidentalis - S. notialis) (Propeleda carpenteri (Ennucula puelcha (Barbatia cancellaria - Serratina capsoides))))) (Propilidium curumim - Nautilus pompilius - Lolliguncula brevis)).
Resumo:
We present a molecular phylogenetic analysis of caenophidian (advanced) snakes using sequences from two mitochondrial genes (12S and 16S rRNA) and one nuclear (c-mos) gene (1681 total base pairs), and with 131 terminal taxa sampled from throughout all major caenophidian lineages but focussing on Neotropical xenodontines. Direct optimization parsimony analysis resulted in a well-resolved phylogenetic tree, which corroborates some clades identified in previous analyses and suggests new hypotheses for the composition and relationships of others. The major salient points of our analysis are: (1) placement of Acrochordus, Xenodermatids, and Pareatids as successive outgroups to all remaining caenophidians (including viperids, elapids, atractaspidids, and all other "colubrid" groups); (2) within the latter group, viperids and homalopsids are sucessive sister clades to all remaining snakes; (3) the following monophyletic clades within crown group caenophidians: Afro-Asian psammophiids (including Mimophis from Madagascar), Elapidae (including hydrophiines but excluding Homoroselaps), Pseudoxyrhophiinae, Colubrinae, Natricinae, Dipsadinae, and Xenodontinae. Homoroselaps is associated with atractaspidids. Our analysis suggests some taxonomic changes within xenodontines, including new taxonomy for Alsophis elegans, Liophis amarali, and further taxonomic changes within Xenodontini and the West Indian radiation of xenodontines. Based on our molecular analysis, we present a revised classification for caenophidians and provide morphological diagnoses for many of the included clades; we also highlight groups where much more work is needed. We name as new two higher taxonomic clades within Caenophidia, one new subfamily within Dipsadidae, and, within Xenodontinae five new tribes, six new genera and two resurrected genera. We synonymize Xenoxybelis and Pseudablabes with Philodryas; Erythrolamprus with Liophis; and Lystrophis and Waglerophis with Xenodon.
Resumo:
It is presented a cladistic analysis of the Dicrepidiina aiming to test the monophyletism of the subtribe and to establish the relationships among the genera. The subtribe is composed by 36 genera and all of them, except Asebis, Lamononia, Neopsephus, Semiotopsis and Spilomorphus were included in the analysis. Fifty two species, especially the type-species of each genus were studied: Achrestus flavocinctus (Candèze, 1859), A. venustus Champion, 1895, Adiaphorus gracilis Schwarz, 1901, A. ponticerianus Candèze, 1859, Anoplischiopsis bivittatus Champion, 1895, Anoplischius bicarinatus Candèze, 1859, A. conicus Candèze, 1900, A. haematopus Candèze, 1859, A. pyronotus Candèze, 1859, Atractosomus flavescens (Germar, 1839), Blauta cribraria (Germar, 1844), Calopsephus apicalis (Schwarz, 1903), Catalamprus angustus (Fleutiaux, 1902), Crepidius flabellifer (Erichson, 1847), C. resectus Candèze, 1859, Cyathodera auripilosus Costa, 1968, C. lanugicollis (Candèze, 1859), C. longicornis Blanchard, 1843, Dayakus angularis Candèze, 1893, Dicrepidius ramicornis (Palisot de Beauvois, 1805), Dipropus brasilianus (Germar, 1824), D. factuellus Candèze, 1859, D. laticollis (Eschscholtz, 1829), D. pinguis (Candèze, 1859), D. schwarzi (Becker, 1961), Elius birmanicus Candèze, 1893, E. dilatatus Candèze, 1878, Heterocrepidius gilvellus Candèze, 1859, H. ventralis Guérin-Méneville, 1838, Lampropsephus cyaneus (Candèze, 1878), Loboederus appendiculatus (Perty, 1830), Olophoeus gibbus Candèze, 1859, Ovipalpus pubescens Solier, 1851, Pantolamprus ligneus Candèze, 1896, P. mirabilis Candèze, 1896, P. perpulcher Westwood, 1842, Paraloboderus glaber Golbach, 1990, Proloboderus crassipes Fleutiaux, 1912, Propsephus beniensis (Candèze, 1859), P. cavifrons (Erichson, 1843), Pseudolophoeus guineensis (Candèze, 1881), Rhinopsephus apicalis (Schwarz, 1903), Sephilus formosanus Schwarz, 1912, S. frontalis Candèze, 1878, Singhalenus gibbus Candèze, 1892, S. taprobanicus Candèze, 1859, Sphenomerus antennalis Candèze, 1859, S. brunneus Candèze, 1865, Spilus atractomorphus Candèze, 1859, S. nitidus Candèze, 1859, Stenocrepidius simonii Fleutiaux, 1891 and Trielasmus varians Blanchard, 1846. Chalcolepidius zonatus (Hemirhipini, Agrypninae), Ctenicera silvatica (Prosternini, Prosterninae), and species of the other subtribes of Ampedini (Elaterinae): Ampedus sanguineus (Ampedina), Melanotus spernendus (Melanotina) and Anchastus digittatus and Physorhinus xanthocephalus (Physorhinina) were used as outgroups. The results of the phylogenetic analysis demonstrated that Dicrepidiina, as formerly defined, does not form a monophyletic group. One genus, represented by Ovipalpus pubescens, was removed from the subtribe. The subtribe is characterized by presence of lamella under 2nd and 3rd tarsomeres of all legs. Also, it was revealed that the genera Achrestus, Anoplischius, Dipropus and Propsephus are not monophyletic. Due to the scarcity of information, all the studied species are redescribed and illustrated.
Resumo:
Description and phylogenetic analysis of the Calycopidina (Lepidoptera, Lycaenidae, Theclinae, Eumaeini): a subtribe of detritivores. The purpose of this paper is to establish a phylogenetic basis for a new Eumaeini subtribe that includes those lycaenid genera in which detritivory has been recorded. Morphological characters were coded for 82 species of the previously proposed "Lamprospilus Section" of the Eumaeini (19 of these had coding identical to another species), and a phylogenetic analysis was performed using the 63 distinct ingroup terminal taxa and six outgroups belonging to four genera. Taxonomic results include the description in the Eumaeini of Calycopidina Duarte & Robbins new subtribe (type genus Calycopis Scudder, 1876), which contains Lamprospilus Geyer, Badecla Duarte & Robbins new genus (type species Thecla badaca Hewitson), Arzecla Duarte & Robbins new genus (type species Thecla arza Hewitson), Arumecla Robbins & Duarte, Camissecla Robbins & Duarte, Electrostrymon Clench, Rubroserrata K. Johnson & Kroenlein revalidated status, Ziegleria K. Johnson, Kisutam K. Johnson & Kroenlein revalidated status, and Calycopis. Previous "infratribe" names Angulopina K. Johnson & Kroenlein, 1993, and Calycopina K. Johnson & Kroenlein, 1993, are nomenclaturally unavailable and polyphyletic as proposed. New combinations include Badecla badaca (Hewitson), Badecla picentia (Hewitson), Badecla quadramacula (Austin & K. Johnson), Badecla lanckena (Schaus), Badecla argentinensis (K. Johnson & Kroenlein), Badecla clarissa (Draudt), Arzecla arza (Hewitson), Arzecla tarpa (Godman & Salvin), Arzecla canacha (Hewitson), Arzecla calatia (Hewitson), Arzecla tucumanensis (K. Johnson & Kroenlein), Arzecla sethon (Godman & Salvin), Arzecla nubilum (H. H. Druce), Arzecla paralus (Godman & Salvin), Arzecla taminella (Schaus), Arzecla albolineata (Lathy), Electrostrymon denarius (Butler & H.Druce), Electrostrymon guzanta (Schaus), Electrostrymon perisus (H. H. Druce), Rubroserrata mathewi (Hewitson), Rubroserrata ecbatana (Hewitson), Kisutam micandriana (K. Johnson), and Kisutam syllis (Godman & Salvin). The structure of the male genitalia lateral window, labides, and brush organs are described and discussed, as are the female genitalia signa of the corpus bursae and 8th abdominal tergum. Widespread wing pattern sexual dimorphism in the Calycopidina is noted and illustrated, and the presence of alternating dark and light bands on the ventral wings of both sexes is discussed. The evidence for detritivory in Lamprospilus, Badecla, Arzecla, Arumecla, Camissecla, Electrostrymon, Ziegleria, Kisutam, and Calycopis is summarized using the new classification.
Resumo:
Caracterizou-se filogeneticamente o vírus da raiva, isolado de morcegos hematógafos (Demodus rotundus). Cento e noventa e nove D. rotundus foram capturados em cinco abrigos, no Norte e Noroeste do Estado do Rio de Janeiro e sul do Espírito Santo. Sete deles foram positivos para a raiva. Amostras desses vírus foram sequenciadas e comparadas com sequências provenientes de diversos estados brasileiros. As sequências de vírus da raiva isoladas, na região norte do Estado do Rio de Janeiro, mostraram características que as distinguem de amostras de vírus isoladas em outras regiões do país, no entanto foram idênticas às isoladas de bovinos no noroeste do Rio de Janeiro.