150 resultados para Fibroblast Motility
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The acellular dermal matrix (ADM) was introduced in periodontology as a substitute for the autogenous grafts, which became restricted because of the limited source of donor's tissue. The aim of this study was to investigate, in vitro, the distribution, proliferation and viability of human gingival fibroblasts seeded onto ADM. ADM was seeded with human gingival fibroblasts for up to 21 days. The following parameters were evaluated: cell distribution, proliferation and viability. Results revealed that, at day 7, fibroblasts were adherent and spread on ADM surface, and were unevenly distributed, forming a discontinuous single cell layer; at day 14, a confluent fibroblastic monolayer lining ADM surface was noticed. At day 21, the cell monolayer exhibited a reduction in cell density. At 7 days, about to 90% of adherent cells on ADM surface were cycling while at 14 and 21 days this proportion was significantly reduced. A high proportion of viable cell was detected on AMD surface both on 14 and 21 days. The results suggest that fibroblast seeding onto ADM for 14 days can allow good conditions for cell adhesion and spreading on the matrix; however, migration inside the matrix was limited.
Resumo:
Souza MA, Souza MH, Palheta RC Jr, Cruz PR, Medeiros BA, Rola FH, Magalhaes PJ, Troncon LE, Santos AA. Evaluation of gastrointestinal motility in awake rats: a learning exercise for undergraduate biomedical students. Adv Physiol Educ 33: 343-348, 2009; doi: 10.1152/advan.90176.2008.-Current medical curricula devote scarce time for practical activities on digestive physiology, despite frequent misconceptions about dyspepsia and dysmotility phenomena. Thus, we designed a hands-on activity followed by a small-group discussion on gut motility. Male awake rats were randomly submitted to insulin, control, or hypertonic protocols. Insulin and control rats were gavage fed with 5% glucose solution, whereas hypertonic-fed rats were gavage fed with 50% glucose solution. Insulin treatment was performed 30 min before a meal. All meals (1.5 ml) contained an equal mass of phenol red dye. After 10, 15, or 20 min of meal gavage, rats were euthanized. Each subset consisted of six to eight rats. Dye recovery in the stomach and proximal, middle, and distal small intestine was measured by spectrophotometry, a safe and reliable method that can be performed by minimally trained students. In a separate group of rats, we used the same protocols except that the test meal contained (99m)Tc as a marker. Compared with control, the hypertonic meal delayed gastric emptying and gastrointestinal transit, whereas insulinic hypoglycemia accelerated them. The session helped engage our undergraduate students in observing and analyzing gut motor behavior. In conclusion, the fractional dye retention test can be used as a teaching tool to strengthen the understanding of basic physiopathological features of gastrointestinal motility.
Resumo:
Background and Objective: Impaired cell metabolism and increased cell death in fibroblast cells are physiological features of chronic tendinopathy. Although several studies have shown that low-level laser therapy (LLLT) at certain parameters has a biostimulatory effect on fibroblast cells, it remains uncertain if LLLT effects depend on the physiological state. Study Design/Material and Methods: High-metabolic immortal cell culture and primary human keloid fibroblast cell culture were used in this study. Trypan blue exclusion and the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) test were used to determine cell viability and proliferation. Propidium iodide stain was used for cell-cycle analysis by flow cytometry. Laser irradiation was performed daily on three consecutive days with a GaAlAs 660-nm laser (mean output: 50 mW, spot size 2 mm(2), power density = 2.5 W/cm(2)) and a typical LLLT dose and a high LLLT dose (irradiation times: 60 or 420 s; fluences: 150 or 1050 J/cm(2); energy delivered: 3 or 21 J). Results: Primary fibroblast cell culture from human keloids irradiated with 3 J showed significant proliferation by the trypan blue exclusion test (p < 0.05), whereas the 3T3 cell culture showed no difference using this method. Propidium iodide staining flow cytometry data showed a significant decrease in the percentage of cells being in proliferative phases of the cell cycle (S/g(2)/M) when irradiated with 21 J in both cell types (hypodiploid cells increased). Conclusions: Our data support the hypothesis that the physiological state of the cells affects the LLLT results, and that high-metabolic rate and short-cell-cycle 3T3 cells are not responsive to LLLT. In conclusion, LLLT with a dose of 3 J reduced cell death significantly, but did not stimulate cell cycle. A LLLT dose of 21 J had negative effects on the cells, as it increased cell death and inhibited cell proliferation.
Resumo:
Block copolymers containing isosorbide succinate and L-lactic acid repeating units with different mass compositions were synthesized in two steps: bulk ring-opening copolymerization from L-lactide and poli(isosorbide succinate) (PIS) preoligomer, in the presence of tin(II) 2-ethylhexanoate as catalyst. followed by chain extension in solution by using hexamethylene diisocyanate. Poly(L-lactide) (PLLA) and a chain extension product from PIS were also obtained, for comparison. SEC, (1)H and (13)C NMR, MALDI-TOFMS, WAXD, DSC, TG, and contact angle measurements were used in their characterization. The incorporation of isosorbide succinate into PLLA main backbone had minor effect on the thermal stability and the T(g) of the products. However, it reduced the crystallinity and increased the surface energy in relation to PLLA. Nonwoven mats of the block copolymers and PLLA obtained by electrospinning technique were submitted to fibroblasts 3T3-L1 cell culture. The copolymers presented enhanced cell adhesion and proliferation rate as revealed by MTT assay and SEM images. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Background: Fibroblast growth factor 23 (FGF23) concentrations increase early in chronic kidney disease (CKD), and the influence of current CKD-mineral and bone disorder (MBD) therapies on serum FGF23 levels is still under investigation. Methods: In this post-hoc analysis of a randomized clinical trial, phosphate binders and calcitriol were washed out of 72 hemodialysis patients who were then submitted to bone biopsy, coronary tomography and biochemical measures, including FGF23. They were randomized to receive sevelamer or calcium acetate for 1 year and the prescription of calcitriol and the calcium concentration in the dialysate were adjusted according to serum calcium, phosphate and PTH and bone biopsy diagnosis. Results: At baseline, bone biopsy showed that 58.3% had low-turnover bone disease, whereas 38.9% had high-turnover bone disease, with no significant differences between them with regard to FGF23. Median baseline FGF23 serum levels were elevated and correlated positively with serum phosphate. After 1 year, serum FGF23 decreased significantly. Repeated measures ANOVA analysis showed that the use of a 3.5-mEq/l calcium concentration in the dialysate, as well as the administration of calcitriol and a calcium-based phosphate binder were associated with higher final serum FGF23 levels. Conclusions: Taken together, our results confirm that the current CKD-MBD therapies have an effect on serum levels of FGF23. Since FGF23 is emerging as a potential treatment target, our findings should be taken into account in the decision on how to manage CKD-MBD therapy. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Our aim was to evaluate the interaction between breast cancer cells and nodal fibroblasts, by means of their gene expression profile. Fibroblast primary cultures were established from negative and positive lymph nodes from breast cancer patients and a similar gene expression pattern was identified, following cell culture. Fibroblasts and breast cancer cells (MDA-MB231, MDA-MB435, and MCF7) were cultured alone or co-cultured separated by a porous membrane (which allows passage of soluble factors) for comparison. Each breast cancer lineage exerted a particular effect on fibroblasts viability and transcriptional profile. However, fibroblasts from positive and negative nodes had a parallel transcriptional behavior when co-cultured with a specific breast cancer cell line. The effects of nodal fibroblasts on breast cancer cells were also investigated. MDA MB-231 cells viability and migration were enhanced by the presence of fibroblasts and accordingly, MDA-MB435 and MCF7 cells viability followed a similar pattern. MDA-MB231 gene expression profile, as evaluated by cDNA microarray, was influenced by the fibroblasts presence, and HNMT, COMT, FN3K, and SOD2 were confirmed downregulated in MDA-MB231 co-cultured cells with fibroblasts from both negative and positive nodes, in a new series of RT-PCR assays. In summary, transcriptional changes induced in breast cancer cells by fibroblasts from positive as well as negative nodes are very much alike in a specific lineage. However, fibroblasts effects are distinct in each one of the breast cancer lineages, suggesting that the inter-relationships between stromal and malignant cells are dependent on the intrinsic subtype of the tumor.
Resumo:
Amyotrophic lateral sclerosis (ALS) is a progressive degenerative disorder affecting motoneurons and the SOD1(G93A) transgenic mice are widely employed to study disease physiopathology and therapeutic strategies. Despite the cellular and biochemical evidences of an early motor system dysfunction, the conventional behavioral tests do not detect early motor impairments in SOD1 mouse model. We evaluated early changes in motor behavior of ALS mice by doing the analyses of tail elevation, footprint, automatic recording of motor activities by means of an infrared motion sensor activity system and electrophysiological measurements in male and female wild-type (WT) and SOD1(G93A) mice from postnatal day (P) 20 up to endpoint. The classical evaluations of mortality, weight loss, tremor, rotometer, hanging wire and inclined plane were also employed. There was a late onset (after P90) of the impairments of classical parameters and the outcome varied between genders of ALS mice, being tremor, cumulative survival, weight loss and neurological score about 10 days earlier in male than female ALS mice and also about 20 days earlier in ALS males regarding rotarod and hanging wire performances. While diminution of hindpaw base was 10 days earlier in ALS males (P110) compared to females, the steep length decreased 40 days earlier in ALS females (P60) than ALS males. The automatic analysis of motor impairments showed substantial late changes (after P90) of motility and locomotion in the ALS females, but not in the ALS males. It was surprising that the scores of tail elevation were already decreased in ALS males and females by P40, reaching the minimal values at the endpoint. The electrophysiological analyses showed early changes of measures in the ALS mouse sciatic nerve, i.e., decreased values of amplitude (P40) and nerve conduction velocity (P20), and also an increased latency (P20) reaching maximal level of impairments at the late disease phase. The early changes were not accompanied by reductions of neuronal protein markers of neurofilament 200 and ChAT in the ventral part of the lumbar spinal cord of P20 and P60 ALS mice by means of Western blot technique, despite remarkable decreases of those protein levels in P120 ALS mice. In conclusion, early changes of motor behavior and electrophysiological parameters in ALS mouse model must be taken into attention in the analyses of disease mechanisms and therapeutic effects. (C) 2011 Published by Elsevier B.V.
Resumo:
We have observed in previous studies that 6-hydroxydopamine (6-OHDA)-induced lesions in the nigrostriatal dopamine (DA) system promote increases of the astroglial basic fibroblast growth factor (FGF-2, bFGF) synthesis in the ascending DA pathways, event that could be modified by adrenosteroid hormones. Here, we first evaluated the changes of microglial reactivity in relation to the FGF-2-mediated trophic responses in the lesioned nigrostriatal DA system. 6-OHDA was injected into the left side of the rat substantia nigra. The OX42 immunohistochemistry combined with stereology showed the time course of the microglial activation. The OX42 immunoreactivity (IR) was already increased in the pars compacta of the substantia nigra (SNc) and ventral tegmental area (VTA) 2 h after the 6-OHDA injection, peaked on day 7, and remained increased on the 14th day time-interval. In the neostriatum, OX42 immunoreactive (ir) microglial profiles increased at 24 h, peaked at 72 h, was still increased at 7 days but not 14 days after the 6-OHDA injection. Two-colour immunofluorescence analysis of the tyrosine hydroxylase (TH) and OX42 IRs revealed the presence of small patches of TH IR within the activated microglia. A decreased FGF-2 IR was seen in the cytoplasm of DA neurons of the SNc and VTA as soon as 2 h after 6-OHDA injection. The majority of the DA FGF-2 ir cells of these regions had disappeared 72 h after neurotoxin. The astroglial FGF-2 IR increased in the SNc and VTA, which peaked on day 7. Two-colour immunofluorescence and immunoperoxidase analyses of the FGF-2 and OX42 IRs revealed no FGF-2 IR within the reactive or resting microglia. Second, we have evaluated in a series of biochemical experiments whether adrenocortical manipulation can interfere with the nigral lesion and the state of local astroglial reaction, looking at the TH and GFAP levels respectively. Rats were adrenalectomized (ADX) and received a nigral 6-OHDA stereotaxical injection 2 days later and sacrificed up to 3 weeks after the DA lesion. Western blot analysis showed time-dependent decrease and elevation of TH and GFAP levels, respectively, in the lesioned versus contralateral midbrain sides, events potentiated by ADX and worsened by corticosterone replacement. ADX decreased the levels of FGF-2 protein (23 kDa isoform) in the lesioned side of the ventral midbrain compared contralaterally. The results indicate that reactive astroglia, but not reactive microglia, showed an increased FGF-2 IR in the process of DA cell degeneration induced by 6-OHDA. However, interactions between these glial cells may be relevant to the mechanisms which trigger the increased astroglial FGF-2 synthesis and thus may be related to the trophic state of DA neurons and the repair processes following DA lesion. The findings also gave further evidence that adrenocortical hormones may regulate astroglial-mediated trophic mechanisms and wound repair events in the lesioned DA system that may be relevant to the progression of Parkinson`s disease.
Resumo:
The present study investigated the effects of bilateral adrenalectomy (ADX) on the synthesis of basic fibroblast growth factor (bFGF, FGF-2) mRNA and on the expression of its FGF receptor subtype-2 (FGFR2) mRNA after a 6-hydroxydopamine (6-OHDA)-induced lesion of nigrostriatal dopamine system. In previous papers we have demonstrated that corticosterone increases FGF-2 immunoreactivity mainly in the astrocytes of the substantia nigra [Chadi, G., Rosen, L., Cintra, A., Tinner, B., Zoli, M., Pettersson, R.F., Fuxe, K., 1993b. Corticosterone increases FGF-2 (bFGF) immunoreactivity in the substantia nigra of the rat. Neuroreport 4, 783-786.] and that 6-OHDA injected in the ventral midbrain upregulates FGF-2 synthesis in reactive astrocytes in the ascending dopamine pathways [Chadi, G., Cao, Y., Pettersson, R.F., Fuxe, K., 1994. Temporal and spatial increase of astroglial basic fibroblast growth factor synthesis after 6-hydroxydopamine-induced degeneration of the nigrostriatal dopamine neurons. Neuroscience 61, 891-910.]. Rats were adrenalectomized and received a 6-OHDA stereotaxical injection in the ventral midbrain 2 days later. Seven days after the dopamine lesion, Western blot analysis showed a decreased level of tyrosine hydroxylase in the lesioned side of the midbrain, an event that was not altered by ADX or corticosterone replacement. Moreover, the degeneration of nigral dopamine neurons, which was confirmed by the disappearance of acidic FGF (FGF-1) mRNA and the decrement of tyrosine hydroxylase mRNA labeled nigral neurons, was not altered by ADX. The FGF-2 protein (23 kDa isoform but not 21 kDa fraction) levels increased in the lesioned side of the ventral midbrain. This elevation was counteracted by ADX, an effect that was fully reversed by corticosterone replacement. In situ hybridization revealed that ADX counteracted the elevated FGF-2 mRNA levels in putative glial cells of the ipsilateral pars compacta of the substantia nigra and in the ventral tegmental area. The ADX also counteracted the increased density and intensity of the astroglial FGF-2 immunoreactive profiles within the lesioned pars compacta of the substantia nigra and the ventral tegmental area as determined by stereology. The stereotaxical mechanical needle insertion triggered the expression of FGFR2 mRNA in putative glial cells, spreading to the entire ipsilateral ventral midbrain from the region of needle track, an occurrence that was partially reversed by ADX. In conclusion, bilateral ADX counteracted the increased astroglial FGF-2 synthesis in the dopamine regions of the ventral midbrain following a 6-OHDA-induced local lesion and interfered with FGF receptor regulation around injury. These findings give further evidence that adrenocortical hormones may regulate the astroglial FGF-2-mediated trophic mechanisms and wound repair events in the lesioned central nervous system. (c) 2007 Elsevier B.V. All rights reserved.
Resumo:
Well-differentiated liposarcoma (WDLS) is one of the most common malignant mesenchymal tumors and dedifferentiated liposarcoma (DDLS) is a malignant tumor consisting of both WDLS and a transformed nonlipogenic sarcomatous component. Cytogenetically, WDLS is characterized by the presence of ring or giant rod chromosomes containing several amplified genes, including MDM2, TSPAN31 CDK4, and others mainly derived from chromosome bands 12q13-15. However, the 12q13-15 amplicon is large and discontinuous. The focus of this study was to identify novel critical genes that are consistently amplified in primary (nonrecurrent) WDLS and with potential relevance for future targeted therapy. Using a high-resolution (5.0 kb) ""single nucleotide polymorphism""/copy number variation microarray to screen the whole genome in a series of primary WDLS, two consistently amplified areas were found on chromosome 12: one region containing the MDM2 and CPM genes, and another region containing the FRS2 gene. Based on these findings, we further validated FRS2 amplification in both WDLS and DDLS. Fluorescence in situ hybridization confirmed FRS2 amplification in all WDLS and DDLS tested (n = 57). Real time PCR showed FRS2 mRNA transcriptional upregulation in WDLS (n = 19) and DDLS (n = 13) but not in lipoma (n = 5) and normal fat (n = 9). Immunoblotting revealed high expression levels of phospho-FRS2 at 1436 and slightly overexpression of total FRS2 protein in liposarcoma but not in normal fat or preadipocytes. Considering the critical role of FRS2 in mediating fibroblast growth factor receptor signaling, our findings indicate that FRS2 signaling should be further investigated as a potential therapeutic target for liposarcoma. (C) 2011 Wiley-Liss, Inc.
Resumo:
Context: Abnormal FGFR4 expression has been detected in pituitary tumors, especially in larger and invasive adenomas. In addition, the FGFR4 functional polymorphism G388R has been associated with poor outcome in several human malignancies. Then, we hypothesized that FGFR4 expression and genotype could be markers of adverse outcome of Cushing`s disease after transsphenoidal surgery. Objectives: The objective was to investigate whether there is an association between the postoperative outcome of Cushing`s disease (remission/recurrence) and the FGFR4 G388R genotype or the FGFR4 expression in corticotrophinomas. Design and Patients: Clinical, hormonal, and pathological data of 76 patients who underwent the first transsphenoidal surgery were retrospectively reviewed. All patients were genotyped for G388R polymorphism. FGFR4 expression was assessed by real-time PCR in 18 corticotrophinomas. Main Outcome Measures: The outcome measures included the FGFR4 G388R genotype and FGFR4 expression in postoperative remission and recurrence of Cushing`s disease. Results: Homozygosis for FGFR4 glycine (Gly(388)) allele was associated with reduced disease-free survival, in the univariate analysis (hazard ratio of 6.91; 95% confidence interval of 1.14-11.26; P = 0.028). Male gender (P = 0.036), lack of pathology confirmation (P = 0.009), and cortisol levels more than 2 mu g/dl in the early postoperative period (P < 0.001) were also significant predictors of Cushing`s disease recurrence in the univariate analysis. FGFR4 overexpression was found in 44% of the corticotrophinomas, and it was associated with lower postoperative remission rate (P = 0.009). Conclusions: Our data suggest that homozygosis for FGFR4 Gly(388) allele and FGFR4 overexpression are associated with higher frequency of postoperative recurrence and persistence of Cushing`s disease, respectively. (J Clin Endocrinol Metab 95: E271-E279, 2010)
Resumo:
P>Objective Congenital hypogonadotropic hypogonadism with anosmia (Kallmann syndrome) or with normal sense of smell is a heterogeneous genetic disorder caused by defects in the synthesis, secretion and action of gonadotrophin-releasing hormone (GnRH). Mutations involving autosomal genes have been identified in approximately 30% of all cases of hypogonadotropic hypogonadism. However, most studies that screened patients with hypogonadotropic hypogonadism for gene mutations did not include gene dosage methodologies. Therefore, it remains to be determined whether patients without detected point mutation carried a heterozygous deletion of one or more exons. Measurements We used the multiplex ligation-dependent probe amplification (MLPA) assay to evaluate the potential contribution of heterozygous deletions of FGFR1, GnRH1, GnRHR, GPR54 and NELF genes in the aetiology of GnRH deficiency. Patients We studied a mutation-negative cohort of 135 patients, 80 with Kallmann syndrome and 55 with normosmic hypogonadotropic hypogonadism. Results One large heterozygous deletion involving all FGFR1 exons was identified in a female patient with sporadic normosmic hypogonadotropic hypogonadism and mild dimorphisms as ogival palate and cavus foot. FGFR1 hemizygosity was confirmed by gene dosage with comparative multiplex and real-time PCRs. Conclusions FGFR1 or other autosomal gene deletion is a possible but very rare event and does not account for a significant number of sporadic or inherited cases of isolated GnRH deficiency.
Resumo:
Illegitimate V(D)J-recombination in lymphoid malignancies involves rearrangements in immunoglobulin or T-cell receptor genes, and these rearrangements may play a role in oncogenic events. High frequencies of TRGV-BJ hybrid gene (rearrangement between the TRB and TRG loci at 7q35 and 7p14-15, respectively) have been detected in lymphocytes from patients with ataxia telangiectasia (AT), and also in patients with lymphoid malignancies. Although the TRGV-BJ gene has been described only in T-lymphocytes, we previously detected the presence of TRGV-BJ hybrid gene in the genomic DNA extracted from SV40-transformed AT5BIVA fibroblasts from an AT patient. Aiming to determine whether the AT phenotype or the SV40 transformation could be responsible for the production of the hybrid gene by illegitimate V(D)J-recombination, DNA samples were extracted from primary and SV40-transformed (normal and AT) cell lines, following Nested-PCR with TRGV- and TRBJ-specific primers. The hybrid gene was only detected in SV40-transformed fibroblasts (AT-5BIVA and MRC-5). Sequence alignment of the cloned PCR products using the BLAST program confirmed that the fragments corresponded to the TRGV-BJ hybrid gene. The present results indicate that the rearrangement can be produced in nonlymphoid cells, probably as a consequence of the genomic instability caused by the SV40-transformation, and independently of ATM gene mutation.
Resumo:
There is evidence that several fibroblast growth factors (FGFs) are involved in growth and development of the corpus luteum (CL), but many FGFs have not been investigated in this tissue, including FGF10. The objective of this study was to determine if FGF10 and its receptor (FGFR2B) are expressed in the CL. Bovine CL were collected from an abattoir and classed as corpus hemorrhagica (stage 1), developing (stage 11), developed (stage 111), and regressed (stage IV) CL. Expression of FGF10 and FGFR2B mRNA was measured by reverse transcription-polymerase chain reaction (RT-PCR). Both genes were expressed in bovine CL, and FGF10 expression did not differ between stages of CL development. FGF10 protein was localized to large and small luteal cells by immunohistochemistry. FGFR2B expression was approximately threefold higher in regressed compared to developing and developed CL (P < 0.05). To determine if FGF10 and FGFR2B expression is regulated during functional luteolysis, cattle were injected with PGF2 alpha and CL collected at 0, 0.5, 2, 4, 12, 24, 48, and 64 hr thereafter (n = 5 CL/time point), and mRNA abundance was measured by real-time RT-PCR. FGF10 mRNA expression did not change during functional luteolysis, whereas FGFR2B mRNA abundance decreased significantly at 2, 4, and 12 hr after PGF2a, and returned to pretreatment levels for the period 24-64 hr post-PGF2 alpha. These data suggest a potential role for FGFR2B signaling during structural luteolysis in bovine CL.
Resumo:
There is evidence that fibroblast growth factors (FGFs) are involved in the regulation of growth and regression of the corpus luteum (CL). However, the expression pattern of most FGF receptors (FGFRs) during CL lifespan is still unknown. The objective of the present study was to determine the pattern of expression of `B` and `C` splice variants of FGFRs in the bovine CL. Bovine CL were collected from an abattoir and classed as corpora hemorrhagica (Stage I), developing (Stage II), developed (Stage III) or regressed (Stage IV) CL. Expression of FGFR mRNA was measured by semiquantitative reverse transcription-polymerase chain reaction and FGFR protein was localised by immunohistochemistry. Expression of mRNA encoding the `B` and `C` spliced forms of FGFR1 and FGFR2 was readily detectable in the bovine CL and was accompanied by protein localisation. FGFR1C and FGFR2C mRNA expression did not vary throughout CL lifespan, whereas FGFR1B was upregulated in the developed (Stage III) CL. FGFR3B, FGFR3C and FGFR4 expression was inconsistent in the bovine CL. The present data indicate that FGFR1 and FGFR2 splice variants are the main receptors for FGF action in the bovine CL.