30 resultados para Ferrite spinel. Citrates precursors. Magnetic material. Radiation absorber
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Glass microspheres containing radionuclides are used to treat liver cancer. A promising alternative therapy is being developed based on the magnetic hyperthermia which is related to the heat supplied by a magnetic material under an alternating current magnetic field. The advantage of this option is that most of killed cells are cancer cells which are more susceptible to the temperature raise. In the present work aluminum iron silicate glasses containing minor glass modifiers and nucleating agents were synthesized as irregular shape particles which were further transformed in microspheres by using a petrol liquefied gas-oxygen torch. The optimized processing parameters which lead to microspheres that give a response to the magnetic field were determined. The dissolution rate in water at 90 degrees C was determined to be 3 x 10(-8) g cm(-2) min(-1). The microsphere size distribution was determined by laser scattering. The crystalline phase responsible for the ferromagnetic response was identified as magnetite. Since this phase has a high saturation magnetization and high Curie temperature, it is potentially useful for biomedical applications. The hysteresis magnetic loop was measured for materials produced in different conditions, and some of them showed to be appropriated for thermotherapy. The ratio Fe(3+)/Fe(total) was determined by Mossbauer spectroscopy. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Terbium (Tb) doped LaMgAl(11)O(19) phosphors have been prepared by the combustion of corresponding metal nitrates (oxidizer) and urea (fuel) at furnace temperature as low as 500 C Combustion synthesized powder phosphor was characterized by X-ray diffraction and field emission scanning electron microscopy techniques LaMgAl(11)O(19) doped with trivalent terbium ions emit weakly in blue and orange light region and strongly in green light region when excited by the ultraviolet light of 261 nm Electron Spin Resonance (ESR) studies were carried out to study the defect centres Induced in the phosphor by gamma irradiation and also to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process Room temperature ESR spectrum of irradiated phosphor appears to be a superposition of at least two defect centres One of the centres (centre I) with principal g-values g(parallel to) = 2 0417 and g(perpendicular to) = 2 0041 is identified as O(2)(-) ion while centre II with an axially symmetric g-tensor with principal values g(parallel to) = 19698 and g(perpendicular to) = 1 9653 is assigned to an F(+) centre (singly ionized oxygen vacancy) An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F(+) centre) seems to originate from an F centre (oxygen vacancy with two electrons) The F centre and also the F+ centre appear to correlate with the observed high temperature TSL peak in LaMgAl(11)O(19) Tb phosphor (C) 2010 Elsevier Masson SAS All rights reserved
Resumo:
An evaluation was made of the influence of calcination temperatures on the structure, morphology and eletromagnetic properties of Ni-Zn ferrite powders. To this end, Ni(0.5)Zn(0.5)Fe(2)O(4) ferrite powders were prepared by combustion reaction and calcined at temperatures of 800, 1000 and 1200 degrees C/2 h. The resulting powders were characterized by XRD, SEM and reflectivity measurements in the frequency bands of 8-12 GHz. The results demonstrated that raising the calcination temperature increased the particle sizes of the powders of all the systems in question, improving the reflectivity of the materials. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This paper reports on a study of Cr(3+)-doped nanosized Ni-Zn ferrites produced by combustion reaction, and evaluates their morphological and magnetic properties. The powders were characterized by X-ray diffraction (XRD) and SEM and magnetic properties. All the compositions showed the formation of the inverse spinel phase of Ni-Zn ferrite. The average crystallite size ranged from 21 to 26 nm. The saturation magnetization was found to be in the range of 53-43 emu/g. The increase in Cr(3+) concentration in the Ni-Zn ferrite caused a reduction in hysteresis losses and a slight reduction in the saturation magnetization. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
This work involved an investigation to ascertain how the substitution of nickel ions for zinc ions affects the structural, morphological and magnetic properties of NiFe(2)O(4) ferrite samples. Ni(1-x)Zn(x)Fe(2)O(4) (x = 0.0, 0.3 0.5, 0.7) powders were prepared by combustion reaction and characterized structurally by X-ray diffraction. The specific surface area of the powders was determined by the nitrogen adsorption method (BET). Magnetization measurements were taken using an alternative gradient magnetometer (AGM), which revealed that the powders prepared by combustion reaction resulted in nanosized particles with a particle size of 18-27 nm. The crystallite size and lattice parameter increased as the concentration of Zn increased. Moreover, augmenting the Zn content in the NiFe(2)O(4) ferrite increased the saturation magnetization and coercive field. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The magnetic structure of NiFe(2)O(4) nanoparticles has been investigated by means of Mossbauer spectra at T=4.2 K in applied fields up to 12 T. Four samples were studied, with mean particle diameters ranging from 4.3 to 8.9 nm. All spectra could be decomposed into three sextets, two corresponding to the ferrimagnetic sublattices of Fe ions in the spinel structure (core) and the third one to randomly frozen spins near the particle surface (shell). The shell thickness, calculated from the fraction of disordered spins, was found to be about one-third of the particle radius at H (app)=e0 and to decrease with the applied field toward a common limit of similar to 0.4 nm. The mean canting angle relative to the field was also found to decrease for increasing fields, at a rate inversely correlated to the particle size.
Resumo:
Magnetic properties of nanocrystalline NiFe(2)O(4) spinel mechanically processed for 350 h have been studied using temperature dependent from both zero-field and in-field (57)Fe Mossbauer spectrometry and magnetization measurements. The hyperfine structure allows us to distinguish two main magnetic contributions: one attributed to the crystalline grain core, which has magnetic properties similar to the NiFe(2)O(4) spinel-like structure (n-NiFe(2)O(4)) and the other one due to the disordered grain boundary region, which presents topological and chemical disorder features(d-NiFe(2)O(4)). Mossbauer spectrometry determines a large fraction for the d-NiFe(2)O(4) region(62% of total area) and also suggests a speromagnet-like structure for it. Under applied magnetic field, the n-NiFe(2)O(4) spins are canted with angle dependent on the applied field magnitude. Mossbauer data also show that even under 120 kOe no magnetic saturation is observed for the two magnetic phases. In addition, the hysteresis loops, recorded for scan field of 50 kOe, are shifted in both field and magnetization axes, for temperatures below about 50 K. The hysteresis loop shifts may be due to two main contributions: the exchange bias field at the d-NiFe(2)O(4)/n-NiFe(2)O(4) interfaces and the minor loop effect caused by a high magnetic anisotropy of the d-NiFe(2)O(4) phase. It has also been shown that the spin configuration of the spin-glass like phase is modified by the consecutive field cycles, consequently the n-NiFe(2)O(4)/d-NiFe(2)O(4) magnetic interaction is also affected in this process. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
We report a single-step chemical synthesis of iron oxide hollow nanospheres with 9.3 nm in diameter. The sample presents a narrow particle diameter distribution and chemical homogeneity. The hollow nature of the particles is confirmed by HRTEM and HAADF STEM analysis. Electron and x-ray diffraction show that the outer material component is constituted by 2 nm ferrite crystals. Mossbauer data provide further evidence for the formation of iron oxide with high structural disorder, magnetically ordered at 4.2 K and superparamagnetism at room temperature. An unusual magnetic behavior under an applied field is reported, which can be explained by the large fraction of atoms existing at both inner and outer surfaces.
Resumo:
Ferrites of the type M(II)Fe(2)O(4) (M = Fe and Co) have been prepared by the traditional coprecipitation method. These ferrites were modified by the adsorption of fatty acids derived from soybean and castor oil and were then dispersed in cyclohexane, providing very stable magnetic fluids, readily usable in nonpolar media. The structural properties of the ferrites and modified ferrites as well as the magnetic fluids were characterized by XRD (X-ray powder diffraction), TEM (transmission electron microscopy), DRIFTS (diffusion reflectance infrared Fourier transform spectroscopy), FTMR (Fourier transform near-infrared), UV-vis, normal Raman spectroscopy, and surface-enhanced Raman scattering (SERS). XRD and TEM analysis have shown that the magnetic nanoparticles (nonmodified and modified) present diameters in the range of 10-15 nm. DRIFTS measurements have shown that the carboxylate groups of soybean and castor oil fatty acids adsorb on the ferrite surface, forming three different structures: a bridging bidentate, a bridging monodentate, and a bidentate chelate structure. The FTIR and Raman spectra of nonmodified Fe(3)O(4) and CoFe(2)O(4) nanoparticles have shown that the number of observed phonons is not compatible with the expected O(h)(7) symmetry, since IR-only active phonons were observed. in the Raman spectra and vice versa. SERS measurements of a CoFe(2)O(4) thin film on a SERS-active gold electrode at different applied potentials made possible the assignment of the signals near 550 and 630 cm(-1) to Co-O motions and the signals near 470 and 680 cm(-1) to Fe-O motions.
Resumo:
Variations in the spatial configuration of the interstellar magnetic field (ISMF) near the Sun can be constrained by comparing the ISMF direction at the heliosphere found from the Interstellar Boundary Explorer (IBEX) spacecraft observations of a ""Ribbon"" of energetic neutral atoms (ENAs), with the ISMF direction derived from optical polarization data for stars within similar to 40 pc. Using interstellar polarization observations toward similar to 30 nearby stars within similar to 90 degrees of the heliosphere nose, we find that the best fits to the polarization position angles are obtained for a magnetic pole directed toward ecliptic coordinates of lambda, beta similar to 263 degrees, 37 degrees (or galactic coordinates of l, b similar to 38 degrees, 23 degrees), with uncertainties of +/- 35 degrees based on the broad minimum of the best fits and the range of data quality. This magnetic pole is 33 degrees from the magnetic pole that is defined by the center of the arc of the ENA Ribbon. The IBEX ENA ribbon is seen in sight lines that are perpendicular to the ISMF as it drapes over the heliosphere. The similarity of the polarization and Ribbon directions for the local ISMF suggests that the local field is coherent over scale sizes of tens of parsecs. The ISMF vector direction is nearly perpendicular to the flow of local interstellar material (ISM) through the local standard of rest, supporting a possible local ISM origin related to an evolved expanding magnetized shell. The local ISMF direction is found to have a curious geometry with respect to the cosmic microwave background dipole moment.
Resumo:
In this paper, we present multiband optical polarimetric observations of the very-high energy blazar PKS 2155-304 made simultaneously with a HESS/Fermi high-energy campaign in 2008, when the source was found to be in a low state. The intense daily coverage of the data set allowed us to study in detail the temporal evolution of the emission, and we found that the particle acceleration time-scales are decoupled from the changes in the polarimetric properties of the source. We present a model in which the optical polarimetric emission originates at the polarized mm-wave core and propose an explanation for the lack of correlation between the photometric and polarimetric fluxes. The optical emission is consistent with an inhomogeneous synchrotron source in which the large-scale field is locally organized by a shock in which particle acceleration takes place. Finally, we use these optical polarimetric observations of PKS 2155-304 at a low state to propose an origin for the quiescent gamma-ray flux of the object, in an attempt to provide clues for the source of its recently established persistent TeV emission.
Resumo:
This paper reports a direct observation of an interesting split of the (022)(022) four-beam secondary peak into two (022) and (022) three-beam peaks, in a synchrotron radiation Renninger scan (phi-scan), as an evidence of the layer tetragonal distortion in two InGaP/GaAs (001) epitaxial structures with different thicknesses. The thickness, composition, (a perpendicular to) perpendicular lattice parameter, and (01) in-plane lattice parameter of the two epitaxial ternary layers were obtained from rocking curves (omega-scan) as well as from the simulation of the (022)(022) split, and then, it allowed for the determination of the perpendicular and parallel (in-plane) strains. Furthermore, (022)(022) omega:phi mappings were measured in order to exhibit the multiple diffraction condition of this four-beam case with their split measurement.
Resumo:
Hybrid reflections (HRs) involving substrate and layer planes (SL type) [Morelhao et al., Appl. Phys. Len. 73 (15), 2194 (1998)] observed in Chemical Beam Epitaxy (CBE) grown InGaP/GaAs(001) structures were used as a three-dimensional probe to analyze structural properties of epitaxial layers. A set of (002) rocking curves (omega-scan) measured for each 15 degrees in the azimuthal plane was arranged in a pole diagram in phi for two samples with different layer thicknesses (#A -58 nm and #B - 370 nm) and this allowed us to infer the azimuthal epilayer homogeneity in both samples. Also, it was shown the occurrence of (1 (1) over bar3) HR detected even in the thinner layer sample. Mappings of the HR diffraction condition (omega:phi) allowed to observe the crystal truncation rod through the elongation of HR shape along the substrate secondary reflection streak which can indicate in-plane match of layer/substrate lattice parameters. (C) 2009 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
Resumo:
In this work the synthesis of cubic, FDU-1 type, ordered mesoporous silica (OMS) was developed from two types of silicon source, tetraethyl orthosilicate (TEOS) and a less expensive compound, sodium silicate (Na(2)Si(3)O(7)), in the presence of a new triblock copolymer template Vorasurf 504 (EO(38)BO(46)EO(38)). For both silicon precursors the synthesis temperature was evaluated. For TEOS the effect of polymer dissolution in methanol and the acid solution (HCl and HBr) on the material structure was analyzed. For Na(2)Si(3)O(7) the influence of the polymer mass and the hydrothermal treatment time were the explored experimental parameters. The samples were examined by Small Angle X-ray Scattering (SAXS) and Nitrogen Sorption. For both precursors the decrease on the synthesis temperature from ambient, -25 degrees C, to -15 degrees C improved the ordered porous structure. For TEOS, the SAXS results showed that there is an optimum amount of hydrophobic methanol that contributed to dissolve the polymer but did not provoke structural disorder. The less electronegative Br-ions, when compared to Cl-, induced a more ordered porous structure, higher surface areas and larger lattice parameters. For Na(2)Si(3)O(7) the increase on the hydrothermal treatment time as well as the use of an optimized amount of polymer promoted a better ordered porous structure. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Materials and methods: Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5kGy, using a 60Co gamma source facility. Samples irradiated with 3kGy were exposed for 2h to a 20Vcm-1 static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36C for 20h, gamma-irradiated with doses from 1-4kGy, and submitted to an electric field of 180Vcm-1. Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with -H2AX foci. Results: In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with -H2AX foci increased 40%, approximately. Conclusions: Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation+EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with -H2AX foci in MRC5 cells indicates that an EF interferes mostly in the DNA repair mechanisms. A molecular ad-hoc model is proposed.