67 resultados para Feminist studies journal
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The health-relevant functionality of 10 thermally processed Peruvian Andean grains (five cereals, three pseudocereals, and two legumes) was evaluated for potential type 2 diabetes-relevant antihyperglycemia and antihypertension activity using in vitro enzyme assays. Inhibition of enzymes relevant for managing early stages of type 2 diabetes such as hyperglycemia-relevant alpha-glucosidase and alpha-amylase and hypertension-relevant angiotensin I-converting enzyme (ACE) were assayed along with the total phenolic content, phenolic profiles, and antioxidant activity based on the 1,1-diphenyl-2-picrylhydrazyl radical assay. Purple corn (Zea mays L.) (cereal) exhibited high free radical scavenging-linked antioxidant activity (77%) and had the highest total phenolic content (8 +/- 1 mg of gallic acid equivalents/g of sample weight) and alpha-glucosidase inhibitory activity (51% at 5 mg of sample weight). The major phenolic compound in this cereal was protocatechuic acid (287 +/- 15 mu g/g of sample weight). Pseudocereals such as Quinoa (Chenopodium quinoa Willd) and Kaniwa (Chenopodium pallidicaule Aellen) were rich in quercetin derivatives (1,131 +/- 56 and 943 +/- 35 mu g [expressed as quercetin aglycone]/g of sample weight, respectively) and had the highest antioxidant activity (86% and 75%, respectively). Andean legumes (Lupinus mutabilis cultivars SLP-1 and H-6) inhibited significantly the hypertension-relevant ACE (52% at 5 mg of sample weight). No alpha-amylase inhibitory activity was found in any of the evaluated Andean grains. This in vitro study indicates the potential of combination of Andean whole grain cereals, pseudocereals, and legumes to develop effective dietary strategies for managing type 2 diabetes and associated hypertension and provides the rationale for animal and clinical studies.
Resumo:
Local food diversity and traditional crops are essential for cost-effective management of the global epidemic of type 2 diabetes and associated complications of hypertension. Water and 12% ethanol extracts of native Peruvian fruits such as Lucuma (Pouteria lucuma), Pacae (Inga feuille), Papayita arequipena (Carica pubescens), Capuli (Prunus capuli), Aguaymanto (Physalis peruviana), and Algarrobo (Prosopis pallida) were evaluated for total phenolics, antioxidant activity based on 2, 2-diphenyl-1-picrylhydrazyl radical scavenging assay, and functionality such as in vitro inhibition of alpha-amylase, alpha-glucosidase, and angiotensin I-converting enzyme (ACE) relevant for potential management of hyperglycemia and hypertension linked to type 2 diabetes. The total phenolic content ranged from 3.2 (Aguaymanto) to 11.4 (Lucuma fruit) mg/g of sample dry weight. A significant positive correlation was found between total phenolic content and antioxidant activity for the ethanolic extracts. No phenolic compound was detected in Lucuma (fruit and powder) and Pacae. Aqueous extracts from Lucuma and Algarrobo had the highest alpha-glucosidase inhibitory activities. Papayita arequipena and Algarrobo had significant ACE inhibitory activities reflecting antihypertensive potential. These in vitro results point to the excellent potential of Peruvian fruits for food-based strategies for complementing effective antidiabetes and antihypertension solutions based on further animal and clinical studies.
Resumo:
The AdS/CFT duality has established a mapping between quantities in the bulk AdS black-hole physics and observables in a boundary finite-temperature field theory. Such a relationship appears to be valid for an arbitrary number of spacetime dimensions, extrapolating the original formulations of Maldacena`s correspondence. In the same sense properties like the hydrodynamic behavior of AdS black-hole fluctuations have been proved to be universal. We investigate in this work the complete quasinormal spectra of gravitational perturbations of d-dimensional plane-symmetric AdS black holes (black branes). Holographically the frequencies of the quasinormal modes correspond to the poles of two-point correlation functions of the field-theory stress-energy tensor. The important issue of the correct boundary condition to be imposed on the gauge-invariant perturbation fields at the AdS boundary is studied and elucidated in a fully d-dimensional context. We obtain the dispersion relations of the first few modes in the low-, intermediate- and high-wavenumber regimes. The sound-wave (shear-mode) behavior of scalar (vector)-type low- frequency quasinormal mode is analytically and numerically confirmed. These results are found employing both a power series method and a direct numerical integration scheme.
Resumo:
The canopy disturbance regime and the influence of gap methods on the interpretation of forest structure and dynamics were evaluated in a tropical semi-deciduous forest in south-eastern Brazil. We encountered a gap density of 11.2 gaps ha(-1) and an average size which varied from 121 to 333 m(2) depending on the gap delimitation method considered (minimum gap size was 10 m(2)). Although average size was slightly higher, the median value obtained (78 m(2)) was comparable to other tropical forest sites and the gap size-class distribution found supported the pattern described for such forest sites. Among 297 gap makers, snapping and uprooting were the most common modes of disturbance. The number and basal area of gap makers were good predictors of gap size. Almost 25% of all gaps suffered from repeated disturbance events that brought about larger gap sizes. Such processes, along with delimitation methods, strongly influenced the estimation of turnover rate and therefore the interpretation of forest dynamics. These results demonstrated the importance of further studies on repeated disturbances, which is often neglected in forest studies.
Resumo:
Purpose: To define the role of magnetization transfer imaging (MTI) in detecting subclinical central nervous system (CNS) lesions in primary antiphospholipid syndrome (PAPS). Materials and Methods: Ten non-CNS PAPS patients were compared to 10 CNS PAPS patients and 10 age- and sex-matched controls. All PAPS patients met Sapporo criteria. All Subjects underwent conventional MRI and complementary MTI analysis to compose histograms. CNS viability was determined according to the magnetization transfer ratio (MTR) by mean pixel intensity (MPI) and the mean peak height (MPH). Volumetric cerebral measurements were assessed by brain parenchyma factor (BPF) and total/cerebral volume. Results: MTR histograms analysis revealed that MPI was significantly different among groups (P < 0.0001). Non-CNS PAPS had a higher MPI than CNS PAPS, (30.5 +/- 1.01 vs. 25.1 +/- 3.17 percent unit (pu); P < 0.05) although lower than controls (30.5 +/- 1.01 vs. 31.20 < 0.50 pu; P < 0.05). MPH in non-CNS PAPS (5.57 +/- 0.20% (1/pu)} was similar to controls (5.63 +/- 0.20% (1/pu), P > 0.05) and higher than CNS PAPS (4.71 +/- 0.30% (1/pu), P < 0.05). A higher peak location (PL) was also observed in the CNS PAPS group in comparison with the other groups (P < 0.0001). In addition, a lower BPF was found in non-CNS PAPS compared to controls (0.80 +/- 0.03 vs. 0.84 +/- 0.02 units; P < 0.05) but similar to CNS PAPS (0.80 +/- 0.03 vs. 0.79 +/- 0.05 units; P > 0.05). Conclusion: Our findings suggest that non-CNS PAPS patients have subclinical cerebral damage. The long-term-clinical relevance of MTI analysis in these patients needs to be defined by prospective studies.
Resumo:
Aim We present a molecular phylogenetic analysis of Brotogeris (Psittacidae) using several distinct and complementary approaches: we test the monophyly of the genus, delineate the basal taxa within it, uncover their phylogenetic relationships, and finally, based on these results, we perform temporal and spatial comparative analyses to help elucidate the historical biogeography of the Neotropical region. Location Neotropical lowlands, including dry and humid forests. Methods Phylogenetic relationships within Brotogeris were investigated using the complete sequences of the mitochondrial genes cyt b and ND2, and partial sequences of the nuclear intron 7 of the gene for Beta Fibrinogen for all eight species and 12 of the 17 taxa recognized within the genus (total of 63 individuals). In order to delinetae the basal taxa within the genus we used both molecular and plumage variation, the latter being based on the examination of 597 skin specimens. Dates of divergence and confidence intervals were estimated using penalized likelihood. Spatial and temporal comparative analyses were performed including several closely related parrot genera. Results Brotogeris was found to be a monophyletic genus, sister to Myiopsitta. The phylogenetic analyses recovered eight well-supported clades representing the recognized biological species. Although some described subspecies are diagnosably distinct based on morphology, there was generally little intraspecific mtDNA variation. The Amazonian species had different phylogenetic affinities and did not group in a monophyletic clade. Brotogeris diversification took place during the last 6 Myr, the same time-frame as previously found for Pionus and Pyrilia. Main conclusions The biogeographical history of Brotogeris implies a dynamic history for South American biomes since the Pliocene. It corroborates the idea that the geological evolution of Amazonia has been important in shaping its biodiversity, argues against the idea that the region has been environmentally stable during the Quaternary, and suggests dynamic interactions between wet and dry forest habitats in South America, with representatives of the Amazonian biota having several independent close relationships with taxa endemic to other biomes.
Resumo:
Most techniques used for estimating the age of Sotalia guianensis (van B,n,den, 1864) (Cetacea; Delphinidae) are very expensive, and require sophisticated equipment for preparing histological sections of teeth. The objective of this study was to test a more affordable and much simpler method, involving of the manual wear of teeth followed by decalcification and observation under a stereomicroscope. This technique has been employed successfully with larger species of Odontoceti. Twenty-six specimens were selected, and one tooth of each specimen was worn and demineralized for growth layers reading. Growth layers were evidenced in all specimens; however, in 4 of the 26 teeth, not all the layers could be clearly observed. In these teeth, there was a significant decrease of growth layer group thickness, thus hindering the layers count. The juxtaposition of layers hindered the reading of larger numbers of layers by the wear and decalcification technique. Analysis of more than 17 layers in a single tooth proved inconclusive. The method applied here proved to be efficient in estimating the age of Sotalia guianensis individuals younger than 18 years. This method could simplify the study of the age structure of the overall population, and allows the use of the more expensive methodologies to be confined to more specific studies of older specimens. It also enables the classification of the calf, young and adult classes, which is important for general population studies.
Resumo:
We consider the three-particle scattering S-matrix for the Landau-Lifshitz model by directly computing the set of the Feynman diagrams up to the second order. We show, following the analogous computations for the non-linear Schrdinger model [1, 2], that the three-particle S-matrix is factorizable in the first non-trivial order.
Resumo:
The magnetic linear dichroism (MLD) at band-edge photon energies in the Voigt geometry was calculated for EuTe. At the spin-flop transition, MLD shows a step-like increase. Above the spin-flop transition MLD slowly decreases and becomes zero when the averaged electronic charge becomes symmetric relative to the axis of light propagation. Further increase of the magnetic field causes ferromagnetic alignment of the spins along the magnetic field direction, and MLD is recovered but with an opposite sign, and reaches maximum absolute values. These results are explained by the rearrangement of the Eu(2+) spin distribution in the crystal lattice as a function of magnetic field, due to the Zeeman interaction, demonstrating that MLD can be a sensitive probe of the spin order in EuTe, and provides information that is not accessible from other magneto-optical techniques, such as magnetic circular dichroism measurement studies.
Resumo:
We perform an analysis of the electroweak precision observables in the Lee-Wick Standard Model. The most stringent restrictions come from the S and T parameters that receive important tree level and one loop contributions. In general the model predicts a large positive S and a negative T. To reproduce the electroweak data, if all the Lee-Wick masses are of the same order, the Lee-Wick scale is of order 5 TeV. We show that it is possible to find some regions in the parameter space with a fermionic state as light as 2.4-3.5 TeV, at the price of rising all the other masses to be larger than 5-8 TeV. To obtain a light Higgs with such heavy resonances a fine-tuning of order a few per cent, at least, is needed. We also propose a simple extension of the model including a fourth generation of Standard Model fermions with their Lee-Wick partners. We show that in this case it is possible to pass the electroweak constraints with Lee-Wick fermionic masses of order 0.4-1.5 TeV and Lee-Wick gauge masses of order 3 TeV.
Resumo:
We construct static soliton solutions with non-zero Hopf topological charges to a theory which is an extension of the Skyrme-Faddeev model by the addition of a further quartic term in derivatives. We use an axially symmetric ansatz based on toroidal coordinates, and solve the resulting two coupled non-linear partial differential equations in two variables by a successive over-relaxation (SOR) method. We construct numerical solutions with Hopf charge up to four, and calculate their analytical behavior in some limiting cases. The solutions present an interesting behavior under the changes of a special combination of the coupling constants of the quartic terms. Their energies and sizes tend to zero as that combination approaches a particular special value. We calculate the equivalent of the Vakulenko and Kapitanskii energy bound for the theory and find that it vanishes at that same special value of the coupling constants. In addition, the model presents an integrable sector with an in finite number of local conserved currents which apparently are not related to symmetries of the action. In the intersection of those two special sectors the theory possesses exact vortex solutions (static and time dependent) which were constructed in a previous paper by one of the authors. It is believed that such model describes some aspects of the low energy limit of the pure SU(2) Yang-Mills theory, and our results may be important in identifying important structures in that strong coupling regime.
Resumo:
We construct exact vortex solutions in 3+1 dimensions to a theory which is an extension, due to Gies, of the Skyrme-Faddeev model, and that is believed to describe some aspects of the low energy limit of the pure SU(2) Yang-Mills theory. Despite the efforts in the last decades those are the first exact analytical solutions to be constructed for such type of theory. The exact vortices appear in a very particular sector of the theory characterized by special values of the coupling constants, and by a constraint that leads to an infinite number of conserved charges. The theory is scale invariant in that sector, and the solutions satisfy Bogomolny type equations. The energy of the static vortex is proportional to its topological charge, and waves can travel with the speed of light along them, adding to the energy a term proportional to a U(1) No ether charge they create. We believe such vortices may play a role in the strong coupling regime of the pure SU(2) Yang-Mills theory.
Resumo:
We discuss the generalized eigenvalue problem for computing energies and matrix elements in lattice gauge theory, including effective theories such as HQET. It is analyzed how the extracted effective energies and matrix elements converge when the time separations are made large. This suggests a particularly efficient application of the method for which we can prove that corrections vanish asymptotically as exp(-(E(N+1) - E(n))t). The gap E(N+1) - E(n) can be made large by increasing the number N of interpolating fields in the correlation matrix. We also show how excited state matrix elements can be extracted such that contaminations from all other states disappear exponentially in time. As a demonstration we present numerical results for the extraction of ground state and excited B-meson masses and decay constants in static approximation and to order 1/m(b) in HQET.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, frequently hinder the development of clinical trials. The purpose of this in vitro study was to determine the modulus of elasticity of a polyurethane isotropic experimental model via tension tests, comparing the results to those reported in the literature for mandibular bone, in order to validate the use of such a model in lieu of mandibular bone in biomechanical studies. MATERIAL AND METHODS: Forty-five polyurethane test specimens were divided into 3 groups of 15 specimens each, according to the ratio (A/B) of polyurethane reagents (PU-1: 1/0.5, PU-2: 1/1, PU-3: 1/1.5). RESULTS: Tension tests were performed in each experimental group and the modulus of elasticity values found were 192.98 MPa (SD=57.20) for PU-1, 347.90 MPa (SD=109.54) for PU-2 and 304.64 MPa (SD=25.48) for PU-3. CONCLUSION: The concentration of choice for building the experimental model was 1/1.
Resumo:
OBJECTIVES: The complexity and heterogeneity of human bone, as well as ethical issues, most always hinder the performance of clinical trials. Thus, in vitro studies become an important source of information for the understanding of biomechanical events on implant-supported prostheses, although study results cannot be considered reliable unless validation studies are conducted. The purpose of this work was to validate an artificial experimental model based on its modulus of elasticity, to simulate the performance of human bone in vivo in biomechanical studies of implant-supported prostheses. MATERIAL AND METHODS: In this study, fast-curing polyurethane (F16 polyurethane, Axson) was used to build 40 specimens that were divided into five groups. The following reagent ratios (part A/part B) were used: Group A (0.5/1.0), Group B (0.8/1.0), Group C (1.0/1.0), Group D (1.2/1.0), and Group E (1.5/1.0). A universal testing machine (Kratos model K - 2000 MP) was used to measure modulus of elasticity values by compression. RESULTS: Mean modulus of elasticity values were: Group A - 389.72 MPa, Group B - 529.19 MPa, Group C - 571.11 MPa, Group D - 470.35 MPa, Group E - 437.36 MPa. CONCLUSION: The best mechanical characteristics and modulus of elasticity value comparable to that of human trabecular bone were obtained when A/B ratio was 1:1.