3 resultados para Feeding system

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sand flies were captured weekly with CDC light traps from December 2003 to November 2005 in three areas of Campo Grande, in the Brazilian state of Mato Grosso do Sul. These areas incorporated two patches of remnant forest and five houses. The blood meals of engorged female sand flies were identified using the avidin-biotin system of immunoenzymatic ELISA capture. Most (327/355) of the females analysed were Lutzomyia longipalpis, of which 66.4% reacted with human blood, 64.8% with that of birds and 8.9% with that of dogs. Females that had taken human blood predominated in the residential areas and two forest patches. The following combinations of blood were also detected for L. longipalpis in some of the samples analysed: bird + human (43.4%), bird + human + dog (6.1%). The combination bird + human + dog + pig was also found for Nyssomyia whitmani. Dogs and pigs appear to have little attractiveness for L. longipalpis. The results obtained demonstrate the eclecticism and high anthropophily of L. longipalpis and raise new questions with regard to the importance of dogs in VL epidemiology and the possible role of man as a source of infection for sand flies. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Aim: To validate a non-nutritive sucking (NNS) scoring system for oral feeding in preterm newborns (PTNB). Methods: A cohort study was carried out in two phases. In phase one of the study, 22 mastered speech-language pathologists received the protocol and procedure for a NNS scoring system to evaluate the content and presentation of the form and to define the grading scale. In phase two, six speech-language pathologists evaluated 51 PTNBs weekly, using the defined scoring system. Setting: This study was carried out in the Nursery Annex to the Maternity at the Intensive and Neonatal Pediatrics Service, Instituto da Crianca, Hospital das Clinicas, School of Medicine, University of Sao Paulo (FMUSP) during the period from May 2004 to May 2006. Participants: A total of 28 speech-language pathologist experts and 51 PTNBs. Results: In the first phase of the study, 22 speech-language pathologists selected the criteria, utilized in the NNS evaluation with 80% agreement. In the second phase of the study, the NNS evaluation was carried out on 51 PTNB, and a scoring system of 50 points was proposed, which corresponds to the smallest number of false positive and negative results regarding oral feeding ability. Conclusion: An NNS evaluation system was validated that was able to indicate when oral feeding could safely begin in PTNBs with a high level of agreement among the speech-language pathologists who have participated.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To analyze the differential recruitment of the raphe nuclei during different phases of feeding behavior, rats were subjected to a food restriction schedule (food for 2 h/day, during 15 days). The animals were submitted to different feeding conditions, constituting the experimental groups: search for food (MFS), food ingestion (MFI), satiety (MFSa) and food restriction control (MFC). A baseline condition (BC) group was included as further control. The MFI and MFC groups, which presented greater autonomic and somatic activation, had more FOS-immunoreactive (FOS-IR) neurons. The MFI group presented more labeled cells in the linear (LRN) and dorsal (DRN) nuclei; the MFC group showed more labeling in the median (MRN), pontine (PRN), magnus (NRM) and obscurus (NRO) nuclei; and the MFSa group had more labeled cells in the pallidus (NRP). The BC exhibited the lowest number of reactive cells. The PRN presented the highest percentage of activation in the raphe while the DRN the lowest. Additional experiments revealed few double-labeled (FOS-IR+ 5-HT-IR) cells within the raphe nuclei in the MFI group, suggesting little serotonergic activation in the raphe during food ingestion. These findings suggest a differential recruitment of raphe nuclei during various phases of feeding behavior. Such findings may reflect changes in behavioral state (e.g., food-induced arousal versus sleep) that lead to greater motor activation, and consequently increased FOS expression. While these data are consistent with the idea that the raphe system acts as gain setter for autonomic and somatic activities, the functional complexity of the raphe is not completely understood. (c) 2008 Elsevier B.V. All rights reserved.