3 resultados para Family stress
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This is a reply to Ortega-Baes` et al. (2010) survey of 25 Argentinean species of cacti evaluated for vivipary. We argue that the sample size and geographic area of the species investigated is insufficient to totally exclude the putative commonness of this condition in the Cactaceae. We indicate possible reasons why they did not find viviparous fruits in their survey. Failure to detect vivipary in cacti of NW Argentina may be correlated with limited taxonomic sampling and geographic region in addition to intrinsic and extrinsic plant factors, including different stages of fruit and seed development and genetic, ecological, and edaphic aspects, which, individually or in concert, control precocious germination. We uphold that viviparity is putatively frequent in this family and list 16 new cases for a total of 53 viviparous cacti, which make up ca. 4% incidence of viviparism in the Cactaceae, a substantially higher percentage than most angiosperm families exhibiting this condition. The Cactaceae ranks fourth in frequency of viviparity after the aquatic families of mangroves and seagrasses. We suggest the re-evaluation of cactus vivipary, primarily as a reproductive adaptation to changing environments and physiological stress with a secondary role as a reproductive strategy with limited offspring dispersal/survival and fitness advantages. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Caulobacter crescentus is a free-living alphaproteobacterium that has 11 predicted LysR-type transcriptional regulators (LTTRs). Previously, a C. crescentus mutant strain with a mini-Tn5lacZ transposon inserted into a gene encoding an LTTR was isolated; this mutant was sensitive to cadmium. In this work, a mutant strain with a deletion was obtained, and the role of this LTTR (called CztR here) was evaluated. The transcriptional start site of this gene was determined by primer extension analysis, and its promoter was cloned in front of a lacZ reporter gene. beta-Galactosidase activity assays, performed with the wild-type and mutant strains, indicated that this gene is 2-fold induced when cells enter stationary phase and that it is negatively autoregulated. Moreover, this regulator is essential for the expression of the divergent cztA gene at stationary phase, in minimal medium, and in response to zinc depletion. This gene encodes a hypothetical protein containing 10 predicted transmembrane segments, and its expression pattern suggests that it encodes a putative zinc transporter. The cztR strain was also shown to be sensitive to superoxide (generated by paraquat) and to hydrogen peroxide but not to tert-butyl hydroperoxide. The expression of katG and ahpC, but not that of the superoxide dismutase genes, was increased in the cztR mutant. A model is proposed to explain how CztR binding to the divergent regulatory regions could activate cztA expression and repress its own transcription.
Resumo:
The META cluster of Leishmania amazonensis contains both META1 and META2 genes, which are upregulated in metacyclic promastigotes and encode proteins containing the META domain. Previous studies defined META2 as a 48.0-kDa protein, which is conserved in other Leishmania species and in Trypanosoma brucei. In this work, we demonstrate that META2 protein expression is regulated during the Leishmania life cycle but constitutive in T. brucei. META2 protein is present in the cytoplasm and flagellum of L amazonensis promastigotes. Leishmania META2-null replacement mutants are more sensitive to oxidative stress and, upon heat shock, assume rounded morphology with shortened flagella. The increased susceptibility of null parasites to heat shock is reversed by extra-chromosomal expression of the META2 gene. Defective Leishmania promastigotes exhibit decreased ability to survive in macrophages. By contrast, META2 expression is decreased by 80% in RNAi-induced T. brucei bloodstream forms with no measurable effect on survival or resistance to heat shock. (C) 2010 Elsevier Inc. All rights reserved.