18 resultados para Fallopian Tubes
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
A 2D steady model for the annular two-phase flow of water and steam in the steam-generating boiler pipes of a liquid metal fast breeder reactor is proposed The model is based on thin-layer lubrication theory and thin aerofoil theory. The exchange of mass between the vapour core and the liquid film due to evaporation of the liquid film is accounted for using some simple thermodynamics models, and the resultant change of phase is modelled by proposing a suitable Stefan problem Appropriate boundary conditions for the now are discussed The resulting non-lineal singular integro-differential equation for the shape of the liquid film free surface is solved both asymptotically and numerically (using some regularization techniques) Predictions for the length to the dryout point from the entry of the annular regime are made The influence of both the traction tau provided by the fast-flowing vapour core on the liquid layer and the mass transfer parameter eta on the dryout length is investigated
Resumo:
GPR (Ground Penetrating Radar) results are shown for perpendicular broadside and parallel broadside antenna orientations. Performance in detection and localization of concrete tubes and steel tanks is compared as a function of acquisition configuration. The comparison is done using 100 MHz and 200 MHz center frequency antennas. All tubes and tanks are buried at the geophysical test site of IAG/USP in Sao Paulo city, Brazil. The results show that the long steel pipe with a 38-mm diameter was well detected with the perpendicular broadside configuration. The concrete tubes were better detected with the parallel broadside configuration, clearly showing hyperbolic diffraction events from all targets up to 2-m depth. Steel tanks were detected with the two configurations. However, the parallel broadside configuration was generated to a much lesser extent an apparent hyperbolic reflection corresponding to constructive interference of diffraction hyperbolas of adjacent targets placed at the same depth. Vertical concrete tubes and steel tanks were better contained with parallel broadside antennas, where the apexes of the diffraction hyperbolas better corresponded to the horizontal location of the buried target disposition. The two configurations provide details about buried targets emphasizing how GPR multi-component configurations have the potential to improve the subsurface image quality as well as to discriminate different buried targets. It is judged that they hold some applicability in geotechnical and geoscientific studies. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Cambial variants represent a form of secondary growth that creates great stem anatomical diversity in lianas. Despite the importance of cambial variants, nothing is known about the developmental mechanisms that may have led to the current diversity seen in these stems. Here, a thorough anatomical analysis of all genera along the phylogeny of Bignonieae (Bignoniaceae) was carried out in order to detect when in their ontogeny and phylogeny there were shifts leading to different stem anatomical patterns. We found that all species depart from a common developmental basis, with a continuous, regularly growing cambium. Initial development is then followed by the modification of four equidistant portions of the cambium that reduce the production of xylem and increase the production of phloem, the former with much larger sieve tubes and an extended lifespan. In most species, the formerly continuous cambium becomes disjunct, with cambial portions within phloem wedges and cambial portions between them. Other anatomical modifications such as the formation of multiples of four phloem wedges, multiple-dissected phloem wedges, and included phloem wedges take place thereafter. The fact that each novel trait raised on the ontogenetic trajectory appeared in subsequently more recent ancestors on the phylogeny suggests a recapitulatory history. This recapitulation is, however, caused by the terminal addition of evolutionary novelties rather than a truly heterochronic process. Truly heterochronic processes were only found in shrubby species, which resemble juveniles of their ancestors, as a result of a decelerated phloem formation by the variant cambia. In addition, the modular evolution of phloem and xylem in Bignonieae seems to indicate that stem anatomical modifications in this group occurred at the level of cambial initials.
Resumo:
(Stigmatic surface, reproductive biology and taxonomy of the Vochysiaceae). The Vochysiaceae are Neotropical trees and shrubs, common in the savanna areas in Central Brazil (Cerrados). The family has been traditionally divided into two tribes: Erismeae, with three genera, and Vochysieae, with five genera. We investigated the stigmatic surface of six Vochysiaceae species, belonging to four genera of Vochysieae: Vochysia, Salvertia, Callisthene and Qualea. Flowers and buds at different developmental stages were collected. Morphological features were observed on fresh material and stigmatic receptivity was inferred based on esterasic activity. Pistils were fixed and embedded in paraplast and sectioned on a rotary microtome; the sections were stained before histological analysis. Stigmas of open flowers were also observed by scanning electron microscopy. Stigmas of all species were wet and showed esterasic activity at pre-anthesis and anthesis stages. Stigmatic surface was continuous with transmitting tissue of glandular nature. Vochysia and Salvertia stigmatic surfaces were formed by multicelular uniseriate hairs, and species of the remaining genera showed papillate surface. The exudate over mature stigmas in all species flowed without rupture of stigmatic Surface and pollen tubes grew down between hairs or papillae. Differences on the stigmatic surface agreed with a phylogenetic reconstruction that separated two clades and indicated that Vochysieae is not monophyletic. Stigmatic features could not be associated with pollination and breeding systems.
Resumo:
The conservation of emblematic threatened species is in highlight nowadays. Interestingly, few invertebrate groups attract scientific attention on this issue while they constitute the vast majority of animal biodiversity. Nevertheless, many invertebrate species are nowadays at risk of extinction. This means that plenty of species are currently disappearing out of sight. During a survey in the southwestern Atlantic Ocean tubes of an endangered species of cerianthid were sampled. This study reports for the very first time the occurrence of the species Phoronis australis in southwestern Atlantic waters and the association of phoronids with the genus Ceriantheomorphe. This raises questions on mutual extinction risks for symbiotic species and also on the criteria for their inclusion on Red Lists.
Resumo:
Rationale: Major coronary vessels derive from the proepicardium, the cellular progenitor of the epicardium, coronary endothelium, and coronary smooth muscle cells (CoSMCs). CoSMCs are delayed in their differentiation relative to coronary endothelial cells (CoEs), such that CoSMCs mature only after CoEs have assembled into tubes. The mechanisms underlying this sequential CoE/CoSMC differentiation are unknown. Retinoic acid (RA) is crucial for vascular development and the main RA-synthesizing enzyme is progressively lost from epicardially derived cells as they differentiate into blood vessel types. In parallel, myocardial vascular endothelial growth factor (VEGF) expression also decreases along coronary vessel muscularization. Objective: We hypothesized that RA and VEGF act coordinately as physiological brakes to CoSMC differentiation. Methods and Results: In vitro assays (proepicardial cultures, cocultures, and RALDH2 [retinaldehyde dehydrogenase-2]/VEGF adenoviral overexpression) and in vivo inhibition of RA synthesis show that RA and VEGF act as repressors of CoSMC differentiation, whereas VEGF biases epicardially derived cell differentiation toward the endothelial phenotype. Conclusion: Experiments support a model in which early high levels of RA and VEGF prevent CoSMC differentiation from epicardially derived cells before RA and VEGF levels decline as an extensive endothelial network is established. We suggest this physiological delay guarantees the formation of a complex, hierarchical, tree of coronary vessels. (Circ Res. 2010;107:204-216.)
Resumo:
Objective: To evaluate the effect of the neuregulins 1-alpha and 1-beta on the regeneration the sciatic nerves of male adult C57BL/6J mice, using the tubulization technique. Methods: Eighteen animals were used, divided into three groups. A polyethylene prosthesis was implanted in a 4.0 mm defect of the left sciatic nerve, as follows: group 1 containing only purified collagen (Vitrogen (R)); group 2, collagen with neuregulin 1-alpha; group 3, collagen with neuregulin 1-beta. The control group consisted of six segments of right sciatic nerves. After four weeks, the animals were sacrificed. A segment from the midpoint of the nerve regenerated inside the prostheses was extracted; histological sections were standardized, and slides were made up for histomorphometric analysis. Results: the results were statistically compared using the Tukey multiple comparisons test and The Student`s t test. The animals treated with neuregulins had greater numbers of myelinized axons, with a statistically significant difference in relation to the collagen-only group. There was no statistical difference between the neuregulin 1-alpha and 1-beta groups. Conclusion: The addition of neuregulins provided a significant increase in the number of myelinized fibers.
Resumo:
Purpose: The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Materials and methods: Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5kGy, using a 60Co gamma source facility. Samples irradiated with 3kGy were exposed for 2h to a 20Vcm-1 static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36C for 20h, gamma-irradiated with doses from 1-4kGy, and submitted to an electric field of 180Vcm-1. Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with -H2AX foci. Results: In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with -H2AX foci increased 40%, approximately. Conclusions: Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation+EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with -H2AX foci in MRC5 cells indicates that an EF interferes mostly in the DNA repair mechanisms. A molecular ad-hoc model is proposed.
Resumo:
In this work we present ab initio calculations of the formation energies and stability of different types of multi-vacancies in carbon nanotubes. We demonstrate that, as in the case of graphene, the reconstruction of the defects has drastic effects on the energetics of the tubes. In particular, the formation of pentagons eliminates the dangling bonds thus lowering the formation energy. This competition leads to vacancies having an even number of carbon atoms removed to be more stable. Finally the appearance of magic numbers indicating more stable defects can be represented by a model for the formation energies that is based on the number of dangling bonds of the unreconstructed system, the pentagons and the relaxation of the final form of the defect formed after the relaxation. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Here we present a parametrized tight-binding (TB) model to calculate the band structure of single-wall carbon nanotubes (SWNTs). On the basis of ab initio calculations we fit the band structure of nanotubes of different radii with results obtained with an orthogonal TB model to third neighbors, which includes the effects of orbital hybridization by means of a reduced set of parameters. The functional form for the dependence of these parameters on the radius of the tubes can be used to interpolate appropriate TB parameters for different SWNTs and to study the effects of curvature on their electronic properties. Additionally, we have shown that the model gives an appropriate description of the optical spectra of SWNTs, which can be useful for a proper assignation of SWNTs` specific chirality from optical absorption experiments.
Resumo:
Several strategies aimed at sorting single-walled carbon nanotubes (SWNT) by diameter and/or electronic structure have been developed in recent years. A nondestructive sorting method was recently proposed in which nanotube bundles are dispersed in water-surfactant solutions and submitted to ultracentrifugation in a density gradient. By this method, SWNTs of different diameters are distributed according to their densities along the centrifuge tube. A mixture of two anionic amphiphiles, namely sodium dodecylsulfate (SIDS) and sodium cholate (SC), presented the best performance in discriminating nanotubes by diameter. We present molecular dynamics studies of the water-surfactant-SWNT system. The simulations revealed one aspect of the discriminating power of surfactants: they can actually be attracted toward the interior of the nanotube cage. The binding energies of SDS and SC on the outer nanotube surface are very similar and depend weakly on diameter. The binding inside the tubes, on the contrary, is strongly diameter dependent: SDS fits best inside tubes with diameters ranging from 8 to 9 angstrom, while SC is best accommodated in larger tubes, with diameters in the range 10.5-12 angstrom. The dynamics at room temperature showed that, as the amphiphile moves to the hollow cage, water molecules are dragged together, thereby promoting the nanotube filling. The resulting densities of filled SWNT are in agreement with measured densities.
Resumo:
Nanostructural beta-nickel hydroxide (beta-Ni(OH)(2)) plates were prepared using the microwave hydrothermal (MH) method at a low temperature and short reaction times. An ammonia solution was employed as the coordinating agent, which reacts with [Ni(H(2)O)(6)](2+) to control the growth of beta-Ni(OH)(2) nuclei. A trigonal beta-Ni(OH)(2) single phase was observed by X-ray diffraction (XRD) analyses, and the crystal cell was constructed with structural parameters and atomic coordinates obtained from Rietveld refinement. Field emission scanning electron microscopy (FE-SEM) images revealed that the samples consisted of hexagonal-shaped nanoplates with a different particle size distribution. Broad absorption bands assigned as transitions of Ni(2+) in oxygen octahedral sites were revealed by UV-vis spectra. Photoluminescence (PL) properties observed with a maximum peak centered in the blue-green region were attributed to different defects, which were produced during the nucleation process. We present a growth process scheme of the beta-Ni(OH)(2) nanoplates. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Cariria orbiculiconiformis gen. nov. et spec. nov., a gymnosperm with gnetoid characters is described from the upper Aptian Crato Formation of the Araripe Basin in northeastern Brazil. Gross-morphology and anatomical details have been studied and characters have been discussed in respect to various seed plants. Several of these characters fit best with those of Gnetales and their putative fossil allies. However, the fossil plant cannot be assigned to any known extinct or extant group of seed plants in their current circumscription. Stem gross-morphology, xylotomical characters and epidermal features indicate a gnetophytic relationship, whereas characters of the reproductive organs are rather distinct from those found in extant taxa. The reproductive unit of the new taxon represents a triple organ consisting of two dichasial ovulate structures and one median pollen-producing structure containing smooth, monosulcate, boat-shaped pollen in-situ. Each ovulate structure consists of two distinct pairs of bracts, a sterile one at the base and a fertile one forming a terminal orbicular capsule. Stiff processes found in the apex of the ovulate structure may represent micropylar tubes of seeds, as seen in the Bennettitales-Erdtmanithecales-Gnetales group. C orbiculiconiformis gen. nov. et spec. nov. was ans herbaceous or semi-shrub-like plant that may have been adapted to the r-strategy in a stressful environment. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The analytical determination of atmospheric pollutants still presents challenges due to the low-level concentrations (frequently in the mu g m(-3) range) and their variations with sampling site and time In this work a capillary membrane diffusion scrubber (CMDS) was scaled down to match with capillary electrophoresis (CE) a quick separation technique that requires nothing more than some nanoliters of sample and when combined with capacitively coupled contactless conductometric detection (C(4)D) is particularly favorable for ionic species that do not absorb in the UV-vis region like the target analytes formaldehyde formic acid acetic acid and ammonium The CMDS was coaxially assembled inside a PTFE tube and fed with acceptor phase (deionized water for species with a high Henry s constant such as formaldehyde and carboxylic acids or acidic solution for ammonia sampling with equilibrium displacement to the non-volatile ammonium ion) at a low flow rate (8 3 nLs(-1)) while the sample was aspirated through the annular gap of the concentric tubes at 25 mLs(-1) A second unit in all similar to the CMDS was operated as a capillary membrane diffusion emitter (CMDE) generating a gas flow with know concentrations of ammonia for the evaluation of the CMDS The fluids of the system were driven with inexpensive aquarium air pumps and the collected samples were stored in vials cooled by a Peltier element Complete protocols were developed for the analysis in air of NH(3) CH(3)COOH HCOOH and with a derivatization setup CH(2)O by associating the CMDS collection with the determination by CE-C(4)D The ammonia concentrations obtained by electrophoresis were checked against the reference spectrophotometric method based on Berthelot s reaction Sensitivity enhancements of this reference method were achieved by using a modified Berthelot reaction solenoid micro-pumps for liquid propulsion and a long optical path cell based on a liquid core waveguide (LCW) All techniques and methods of this work are in line with the green analytical chemistry trends (C) 2010 Elsevier B V All rights reserved
Resumo:
Nanocomposites of carbon nanotubes and titanium dioxide (TiO(2)) have attracted much attention due to their photocatalytic properties. Although many examples in the literature have visualized these nanocomposites by electron microscopic images, spectroscopic characterization is still lacking with regard to the interaction between the carbon nanotube and TiO(2). In this work, we show evidence of the attachment of nanostructured TiO(2) to multiwalled carbon nanotubes(MWNTs) by Raman spectroscopy. The nanostructured TiO(2) was characterized by both full-width at half-maximum (FWHM) and the Raman shift of the TiO(2) band at ca 144 cm(-1), whereas the average diameter of the crystallite was estimated as approximately 7 nm. Comparison of the Raman spectra of the MWNTs and MWNTs/TiO(2) shows a clear inversion of the relative intensities of the G and D bands, suggesting a substantial chemical modification of the outermost tubes due to the attachment of nanostructured TiO(2). To complement the nanocomposite characterization, scanning electronic microscopy and X-ray diffraction were performed. Copyright (C) 2011 John Wiley & Sons, Ltd.