75 resultados para Fabrication of TMOPPMn(III)Cl modified gold electrode

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We describe the development of a label free method to analyze the interactions between Ca(2+) and the porcine S100A12 protein immobilized on polyvinyl butyral (PVB). The modified gold electrodes were characterized using cyclic voltammetry (CV), electrochemical impedance spectroscopy (EIS), scanning electron microscopy (SEM) and surface plasmon resonance (SPR) techniques. SEM analyses of PVB and PVB-S100A12 showed a heterogeneous distribution of PVB spherules on gold surface. EIS and CV measurements have shown that redox probe reactions on the modified gold electrodes were partially blocked due the adsorption of PVB-S100A12, and confirm the existence of a positive response of the immobilized S100Al2 to the presence of calcium ions. The biosensor exhibited a wide linear response to Ca(2+) concentrations ranging from 12.5 to 200 mM. The PVB-S100A12 seems to be bound to the gold electrode surface by physical adsorption: we observed an increase of 1184.32 m degrees in the SPR angle after the adsorption of the protein on the PVB surface (in an indication that 9.84 ng of S100A12 are adsorbed per mm(2) of the Au-PVB electrode), followed by a further increase of 581.66 m degrees after attachment of the Ca(2+) ions. In addition, no SPR response is obtained for non-specific ions. These studies might be useful as a platform for the design of new reusable and sensitive biosensing devices that could find use in the clinical applications. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A new approach to fabricate a disposable electronic tongue is reported. The fabrication of the disposable sensor aimed the integration of all electrodes necessary for measurement in the same device. The disposable device was constructed with gold CD-R and copper sheets substrates and the sensing elements were gold, copper and a gold surface modified with a layer of Prussian Blue. The relative standard deviation for signals obtained from 20 different disposable gold and 10 different disposable copper electrodes was below 3.5%. The performance, electrode materials and the capability of the device to differentiate samples were evaluated for taste substances model, milk with different pasteurization processes (homogenized/pasteurized, ultra high temperature (UHT) pasteurized and UHT pasteurized with low fat content) and adulterated with hydrogen peroxide. In all analysed cases, a good separation between different samples was noticed in the score plots obtained from the principal component analysis (PCA). Crown Copyright (C) 2008 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The modification of a gold electrode surface by electropolymerization of trans-[Ru(NH(3))(4)(Ist)SO(4)](+) to produce an electrochemical sensor for nitric oxide was investigated. The influence of dopamine, serotonin and nitrite as interferents for NO detection was also examined using square-wave voltammetry (SWV). The characterization of the modified electrode was carried out by cyclic voltammetry, electrochemical quartz crystal microbalance (EQCM) and SERS techniques. The gold electrode was successfully modified by the trans-[Ru(NH(3))(4)(Ist)SO(4)](+) complex ion using cyclic voltammetry. The experiments show that a monolayer of the film is achieved after ten voltammetric cycles, that NO in solution can coordinate to the metal present in the layer, that dopamine, serotonin and nitrite are interferents for the detection of NO, and that the response for the nitrite is much less significant than the responses for dopamine and serotonin. The proposed modified electrode has the potential to be applied as a sensor for NO. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pyrolytic graphite electrodes (PGE) were modified into dopamine solutions using phosphate buffer solutions, pH 10 and 6.5, as supporting electrolyte. The modification process involved a previous anodization of the working electrode at +1. 5 V into 0. 1 mol-L-1 NaOH followed by other anodization step, in the same experimental conditions, into dopamine (DA) solutions. pH of the supporting electrolyte performed an important role in the production of a superficial melanin polymeric film, which permitted the simultaneous detection of ascorbic acid (AA), (DA) and uric acid (UA), Delta EAA-DA = 222 mV-, Delta EAA-UA = 360 mV and Delta EDA-UA=138mV, avoiding the superficial poisoning effects. The calculated detection limits were: 1.4 x 10(-6) mol L-1 for uric acid, 1.3x10-(5) molL(-1) for ascorbic acid and 1.1 X 10(-7) mol L-1 for dopamine, with sensitivities of (7.7 +/- 0.5), (0.061 +/- 0.001) and (9.5 +/- 0.05)A mol(-1) cm(-2), respectively, with no mutual interference. Uric acid was determined in urine, blood and serum human samples after dilution in phosphate buffer and no additional sample pre-treatment was necessary. The concentration of uric acid in urine was higher than the values found in blood and serum and the recovery tests (92-102%) indicated that no matrix effects were observed. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Scanning electrochemical microscopy (SECM) in feedback mode was employed to characterise the reactivity and microscopic peculiarities of bismuth and bismuth/lead alloys plated onto gold disk substrates in 0.1 molL(-1) NaOH solutions. Methyl viologen was used as redox mediator, while a platinum microelectrode was employed as the SECM tip. The metal films were electrodeposited ex situ from NaOH solutions containing either bismuth ions only or both bismuth and lead ions. Approach curves and SECM images indicated that the metal films were conductive and locally reactive with oxygen to provide Bi(3+) and Pb(2+) ions. The occurrence of the latter chemical reactions was verified by local anodic stripping voltammetry (ASV) at the substrate solution interface by using a mercury-coated platinum SECM tip. The latter types of measurements allowed also verifying that lead was not uniformly distributed onto the bismuth film electrode substrate. These findings were confirmed by scanning electron microscopy images. The surface heterogeneity produced during the metal deposition process, however, did not affect the analytical performance of the bismuth coated gold electrode in anodic stripping voltammetry for the determination of lead in alkaline media, even in aerated aqueous solutions. Under the latter conditions, stripping peak currents proportional to lead concentration with a satisfactory reproducibility (within 5% RSD) were obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A low-cost method is proposed to classify wine and whisky samples using a disposable voltammetric electronic tongue that was fabricated using gold and copper substrates and a pattern recognition technique (Principal Component Analysis). The proposed device was successfully used to discriminate between expensive and cheap whisky samples and to detect adulteration processes using only a copper electrode. For wines, the electronic tongue was composed of copper and gold working electrodes and was able to classify three different brands of wine and to make distinctions regarding the wine type, i.e., dry red, soft red, dry white and soft white brands. Crown Copyright (C) 2011 Published by Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This work presents a study of the catalytic oxidation of ethanol on polycrystalline gold electrode in alkaline media. The investigation was carried out by means of chronoamperometry, cyclic voltammetry, and in situ FTIR spectroscopy. The main goal was to investigate the early stages of ethanol electrooxidation, namely at fairly low potentials (E = 600 mV vs. RHE) and for moderate reaction times (t < 300 s). Chronoamperometric experiments show a current increase accompanying the increasing in the ethanol concentration up to about 2 M and then a slight decrease at 3 M. Adsorbed CO has been observed as early as about 200 mV vs. RHE and indicates that the cleavage of the C-C bond might occur, probably to a small extent, at very low overpotentials during ethanol adsorption on gold surface. The amount of dissolved acetate ions produced during the chronoamperomentry was followed by the asymmetric stretching band at 1558 cm(-1) as a function of time, and found to increase linearly with time up to 300 s. This allowed estimating the reaction order of acetate formation with respect to ethanol concentration.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Monoclonal antibodies (MAb) have been commonly applied to measure LDL in vivo and to characterize modifications of the lipids and apoprotein of the LDL particles. The electronegative low density lipoprotein (LDL(-)) has an apolipoprotein B-100 modified at oxidized events in vivo. In this work, a novel LDL-electrochemical biosensor was developed by adsorption of anti-LDL(-) MAb on an (polyvinyl formal)-gold nanoparticles (PVF-AuNPs)-modified gold electrode. Electrochemical impedance spectroscopy (EIS) and cyclic voltammetry (CV) were used to characterize the recognition of LDL-. The interaction between MAb-LDL(-) leads to a blockage in the electron transfer of the [Fe(CN)(6)](4-)/K(4)[Fe(CN)(6)](3-) redox couple, which may could result in high change in the electron transfer resistance (R(CT)) and decrease in the amperometric responses in CV analysis. The compact antibody-antigen complex introduces the insulating layer on the assembled surface, which increases the diameter of the semicircle, resulting in a high R(CT), and the charge transferring rate constant k(0) decreases from 18.2 x 10(-6) m/s to 4.6 x 10(-6) m/s. Our results suggest that the interaction between MAb and lipoprotein can be quantitatively assessed by the modified electrode. The PVF-AuNPs-MAb system exhibited a sensitive response to LDL(-), which could be used as a biosensor to quantify plasmatic levels of LDL(-). (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS)(4)/(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A fast and robust analytical method for amperometric determination of hydrogen peroxide (H(2)O(2)) based on batch injection analysis (BIA) on an array of gold microelectrodes modified with platinum is proposed. The gold microelectrode array (n = 14) was obtained from electronic chips developed for surface mounted device technology (SMD), whose size offers advantages to adapt them in batch cells. The effect of the dispensing rate, volume injected, distance between the platinum microelectrodes and the pipette tip, as well as the volume of solution in the cell on the analytical response were evaluated. The method allows the H(2)O(2) amperometric determination in the concentration range from 0.8 mu mol L(-1) to 100 mu mol L(-1). The analytical frequency can attain 300 determinations per hour and the detection limit was estimated in 0.34 mu mol L(-1) (3 sigma). The anodic current peaks obtained after a series of 23 successive injections of 50 mu L of 25 mu mol L(-1) H(2)O(2) showed an RSD < 0.9%. To ensure the good selectivity to detect H(2)O(2), its determination was performed in a differential mode, with selective destruction of the H(2)O(2) with catalase in 10 mmol L(-1) phosphate buffer solution. Practical application of the analytical procedure involved H(2)O(2) determination in rainwater of Sao Paulo City. A comparison of the results obtained by the proposed ampermetric method with another one which combines flow injection analysis (FIA) with spectrophotometric detection showed good agreement. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The anodic oxidation of ascorbic acid on a ruthenium oxide hexacyanoferrate modified electrode was characterized by cyclic voltammetry. On this modified surface, the electrocatalytic process allows the determination of ascorbic acid to be performed at 0.0 V and pH 6.9 with a limit of detection of 2.2 mu M in a flow injection configuration. Under this experimental condition, no interference from glucose, nitrite and uric acid was noticed. Lower detection limit values were obtained by measuring flow injection analysis (FIA) responses at 0.4 V (0.14 mu M), but a concurrent loss of selectivity is expected at this more positive potential. Under optimal FIA operating conditions, the linear response of the method was extended up to 1 mM ascorbic acid. The repeatability of the method for injections of a 1.0 mM ascorbic acid solution was 2.0% (n=10). The usefulness of the method was demonstrated by an addition-recovery experiment with urine samples and the recovered values were in the 98-104% range. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The present study aimed to compare the fluoride (F-) release pattern of a nanofilled resin-modified glass ionomer cement (GIC) (Ketac N100 - KN) with available GICs used in dental practice (resin-modified GIC - Vitremer - V; conventional GIC - Ketac Molar - KM) and a nanofilled resin composite (Filtek Supreme - RC). Discs of each material (n=6) were placed into 4 mL of deionized water in sealed polyethylene vials and shaken, for 15 days. F- release (μg F-/cm²) was measured each day using a fluoride-ion specific electrode. Cumulative F- release means were statistically analyzed by linear regression analysis. In order to analyze the differences among materials and the influence of time in the daily F- release, 2-way ANOVA test was performed (α=0.05). The linear fits between the cumulative F- release profiles of RC and KM and time were weak. KN and V presented a strong relationship between cumulative F- release and time. There were significant differences between the daily F- release overtime up to the third day only for GICs materials. The daily F- release means for RC were similar overtime. The results indicate that the F- release profile of the nanofilled resin-modified GIC is comparable to the resin-modified GIC.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents the fabrication of a nanothick Co-modified film electrochemically synthesized on layer-by-layer (LbL) structures made with dendrimer polyamidoamine/carbon nanotubes (PAMAM/CNT), and its electrocatalytic properties toward H(2)O(2) reduction. Scanning electron microscopy indicated the formation of a homogeneous, 14 nm thick Co film. The porous nature of the PAMAM/CNT LbL film allowed the electrolyte access to the bottom of the electrode, generating a homogenous Co electrodeposit. In addition, the nanostructure based on Co-modified PAMAM/CNT LbL exhibited high electrocatalytic activity for H(2)O(2) reduction when compared to the Co-free PAMAM/CNT LbL film, which demonstrates the suitability of the system studied for biosensing. (C) 2011 The Electrochemical Society. [DOI: 10.1149/1.3602200] All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

An acetylcholinesterase (AchE) based amperometric biosensor was developed by immobilisation of the enzyme onto a self assembled modified gold electrode. Cyclic voltammetric experiments performed with the SAM-AchE biosensor in phosphate buffer solutions ( pH = 7.2) containing acetylthiocholine confirmed the formation of thiocholine and its electrochemical oxidation at E-p = 0.28 V vs Ag/AgCl. An indirect methodology involving the inhibition effect of parathion and carbaryl on the enzymatic reaction was developed and employed to measure both pesticides in spiked natural water and food samples without pre-treatment or pre-concentration steps. Values higher than 91-98.0% in recovery experiments indicated the feasibility of the proposed electroanalytical methodology to quantify both pesticides in water or food samples. HPLC measurements were also performed for comparison and confirmed the values measured amperometrically.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Purple acid phosphatases (PAPs) are a group of metallohydrolases that contain a dinuclear Fe(II)M(II) center (M(II) = Fe, Mn, Zn) in the active site and are able to catalyze the hydrolysis of a variety of phosphoric acid esters. The dinuclear complex [(H(2)O)Fe(III)(mu-OH)Zn(II)(L-H)](CIO(4))(2) (2) with the ligand 2-[N-bis(2-pyridylmethyl)aminomethyl]-4-methyl-6-[N-(2-pyridylmethyl)(2-hydroxybenzyl) aminomethyl]phenol (H(2)L-H) has recently been prepared and is found to closely mimic the coordination environment of the Fe(III)Zn(II) active site found in red kidney bean PAP (Neves et al. J. Am. Chem. Soc. 2007, 129, 7486). The biomimetic shows significant catalytic activity in hydrolytic reactions. By using a variety of structural, spectroscopic, and computational techniques the electronic structure of the Fe(III) center of this biomimetic complex was determined. In the solid state the electronic ground state reflects the rhombically distorted Fe(III)N(2)O(4) octahedron with a dominant tetragonal compression align ad along the mu-OH-Fe-O(phenolate) direction. To probe the role of the Fe-O(phenolate) bond, the phenolate moiety was modified to contain electron-donating or -withdrawing groups (-CH(3), -H, -Br, -NO(2)) in the 5-position. Tie effects of the substituents on the electronic properties of the biomimetic complexes were studied with a range of experimental and computational techniques. This study establishes benchmarks against accurate crystallographic struck ral information using spectroscopic techniques that are not restricted to single crystals. Kinetic studies on the hydrolysis reaction revealed that the phosphodiesterase activity increases in the order -NO(2)<- Br <- H <- CH(3) when 2,4-bis(dinitrophenyl)phosphate (2,4-bdnpp) was used as substrate, and a linear free energy relationship is found when log(k(cat)/k(0)) is plotted against the Hammett parameter a. However, nuclease activity measurements in the cleavage of double stranded DNA showed that the complexes containing the electron-withdrawing -NO(2) and electron-donating CH3 groups are the most active while the cytotoxic activity of the biomimetics on leukemia and lung tumoral cells is highest for complexes with electron-donating groups.