26 resultados para FUNCTIONALIZED GOLD NANOPARTICLES

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Magnetic nanoparticles surface-functionalized with meso-2,3-dimercaptosuccinic acid (MNPs-DMSA) constitute an innovative and promising approach for tissue- and cell-targeted delivery of therapeutic drugs in the lung. Transendothelial migration of leukocytes in the lung is a side effect of endovenous administration of MNPs-DMSA. Using cytologic and phenotypic analysis of murine bronchoalveolar lavage cells, we identified monocytes/macrophages as the main subpopulation of leukocytes involved in this process. Moreover, ultrastructural analysis revealed the presence of nanoparticles inside of numerous macrophages from bronchoalveolar lavage. MNPs-DMSA at concentrations as high as 1 X 10(15) nanoparticles/mL had no toxic effects on macrophages, as evidenced by 3-(4, 5-dimethylthiazolyi-2)-2,5-diphenyltetrazolium bromide (MTT) assay. Notably, MNPs-DMSA up-regulated the mRNA expression of E, L- and P-selectin and macrophage-1 antigen in the murine lung. Upregulation of these cell adhesion molecules was associated with an increased concentration of tumor necrosis factor-alpha in lung. Finally, the critical relevance of the beta(2) integrin-dependent pathway in leukocyte transmigration elicited by MNPs-DMSA was demonstrated by use of knockout mice. Our results characterize mechanisms of the pro-inflammatory effects of MNPs-DMSA in the lung, and identify beta(2) integrin-targeted interventions as promising strategies to reduce pulmonary side effects of MNPs-DMSA during biomedical applications. (C) 2009 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The immobilization of gold nanoparticles (Au NPs) on silica is made possible by the functionalization of the silica surfaces with organosilanes. Au NPs could only be stabilized and firmly attached to silica-support surfaces that were previously modified with amino groups. Au NPs could not be stabilized on bare silica surfaces and most of the NPs were then found in the solution. The metal-support interactions before and after the Au NP formation, observed by X-ray absorption fine structure spectroscopy (XAFS), indicate a stronger interaction of gold-(III) ions with amino-modified silica surfaces than with the silanol groups in bare silica. An amino-modified, silica-based, magnetic support was used to prepare an active Au NP catalyst for the chemoselective oxidation of alcohols, a reaction of great interest for the fine chemical industry.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The control of size and shape of metallic nanoparticles is a fundamental goal in nanochemistry, and crucial for applications exploiting nanoscale properties of materials. We present here an approach to the synthesis of gold nanoparticles mediated by glucose oxidase (GOD) immobilized on solid substrates using the Layer-by-Layer (LbL) technique. The LbL films contained four alternated layers of chitosan and poly(styrene sulfonate) (PSS), with GOD in the uppermost bilayer adsorbed on a fifth chitosan layer: (chitosan/PSS)(4)/(chitosan/GOD). The films were inserted into a solution containing gold salt and glucose, at various pHs. Optimum conditions were achieved at pH 9, producing gold nanoparticles of ca. 30 nm according to transmission electron microscopy. A comparative study with the enzyme in solution demonstrated that the synthesis of gold nanoparticles is more efficient using immobilized GOD. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Trimercaptotriazine-modified gold nanoparticles exhibit strong SERS effects,(1) yielding vibrational profiles very sensitive to the presence of heavy metal ions. Because of the contrasting response observed for selected vibrational bands in the SERS profiles, they provide useful nanoprobes for Hg2+ and Cd2+ ions, allowing direct quantitative assays by employing relative peak intensity ratios instead of using internal standards.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Gold nanoparticles (AuNP) incorporated into hydrotalcite (HT), provide an interesting type of pigment in which temperature can modulate the plasmon resonance and the aggregation phenomenon. As inferred from microscopy techniques, the preferential binding sites are located at the border of the HT external basal surface, leading to aggregates of gold nanoparticles displaying characteristic plasmon resonance and interference bands around 520 and 700 nm, respectively. The thermally induced color changes in the HT-supported gold material arise from the competition between of nanoparticles aggregation and fusion processes, as characterized by TEM and STM. A laser beam can also induce such changes, allowing the writing of optical information on this type of material.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Asystematic study on the surface-enhanced Raman scattering (SERS) for 3,6-bi-2-pyridyl-1,2,4,5-tetrazine (bptz) adsorbed onto citrate-modified gold nanoparticles (cit-AuNps) was carried out based on electronic and vibrational spectroscopy and density functional methods. The citrate/bptz exchange was carefully controlled by the stepwise addition of bptz to the cit-AuNps, inducing flocculation and leading to the rise of a characteristic plasmon coupling band in the visible region. Such stepwise procedure led to a uniform decrease of the citrate SERS signals and to the rise of characteristic peaks of bptz, consistent with surface binding via the N heterocyclic atoms. In contrast, single addition of a large amount of bptz promoted complete aggregation of the nanoparticles, leading to a strong enhancement of the SERS signals. In this case, from the distinct Raman profiles involved, the formation of a new SERS environment became apparent, conjugating the influence of the local hot spots and charge-transfer (CT) effects. The most strongly enhanced vibrations belong to a(1) and b(2) representations, and were interpreted in terms of the electromagnetic and the CT mechanisms: the latter involving significant contribution of vibronic coupling in the system. Copyright (C) 2010 John Wiley & Sons, Ltd.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study describes the synthesis of novel biological hybrid materials, where 3D structures were obtained using gold nanoparticles (AuNps) and methionine (Met) in a one-step procedure in aqueous media. The type of nanostructure can be controlled by tuning the intermolecular interactions between Met and AuNp, which strongly depends on the pH used for the synthesis. Computational simulation using the density-functional theory (DFT) showed that the AuNp - Met 3D structures are formed upon reorientation of Met molecules so that the backbone amine groups interact via H-bonds. These findings were experimentally confirmed using FTIR and UV-vis spectroscopy. Crown Copyright (C) 2008 Published by Elsevier B. V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A systematic and comprehensive study of the interaction of citrate-stabilized gold nanoparticles with triruthenium cluster complexes of general formula [Ru(3)(CH(3)COO)(6)(L)](+) [L = 4-cyanopyridine (4-CNpy), 4,4`-bipyridine (4,4`-bpy) or 4,4`-bis(pyridyl)ethylene (bpe)] has been carried out. The cluster-nanoparticle interaction in solution and the construction of thin films of the hybrid materials were investigated in detail by electronic and surface plasmon resonance (SPR) spectroscopy, Raman scattering spectroscopy and scanning electron microscopy (SEM). Citrate-stabilized gold nanoparticles readily interacted with [Ru(3)O(CH(3)COO)(6)(L)(3)](+) complexes to generate functionalized nanoparticles that tend to aggregate according to rates and extents that depend on the bond strength defined by the characteristics of the cluster L ligands following the sequence bpe > 4,4`-bpy >> 4-CNpy. The formation of compact thin films of hybrid AuNP/[Ru(3)O(CH(3)COO)(6)(L)(3)](+) derivatives with L = bpe and 4,4`-bpy indicated that the stability/lability of AuNP-cluster bonds as well as their solubility are important parameters that influence the film contruction process. Fluorine-doped tin oxide electrodes modified with thin films of these nanomaterials exhibited similar electrocatalytic activity but much higher sensitivity than a conventional gold electrode in the oxidation of nitrite ion to nitrate depending on the bridging cluster complex, demonstrating the high potential for the development of amperometric sensors.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Supported nanoparticles (SNPs) with narrow size distribution were prepared by H(2) reduction of Pd(2+) previously bound, to ligand-modified silica surfaces. Interestingly, the size of the Pd SNPs was tuned by the ligand grafted on the support surface. Amino- and ethylenediamino-functionalized supports formed Pd(0) SNPs of ca. 6 and 1 nm, respectively. The catalytic properties of both Pd(0) SNPs were investigated.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The control of morphology and coating of metal surfaces is essential for a number of organic electronic devices including photovoltaic cells and sensors. In this study, we monitor the functionalization of gold surfaces with 11-mercaptoundecanoic acid (MUA, HS(CH(2))(10)CO(2)H) and cysteamine, aiming at passivating the surfaces for application in surface plasmon resonance (SPR) biosensors. Using polarization-modulated infrared reflection-absorption spectroscopy (PM-IRRAS), cyclic voltammetry, atomic force microscopy and quartz crystal microbalance, we observed a time-dependent organization process of the adsorbed MUA monolayer with alkyl chains perpendicular to the gold surface. Such optimized condition for surface passivation was obtained with a systematic search for experimental parameters leading to the lowest electrochemical signal of the functionalized gold electrode. The ability to build supramolecular architectures was also confirmed by detecting with PM-IRRAS the adsorption of streptavidin on the MUA-functionalized gold. As the approaches used for surface functionalization and its verification with PM-IRRAS are generic, one may now envisage monitoring the fabrication of tailored electrodes for a variety of applications.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Lipase B from Candida antarctica can be directly immobilized onto functionalized superparamagnetic nanoparticles, preserving its enzymatic activity in the enantioselective transesterification of secondary alcohols, with excellent results in terms of enantiomeric discrimination. The immobilized enzyme can be easily recovered with a magnet, allowing its reuse with negligible loss of activity. (C) 2009 Elsevier Ltd. All rights reserved

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Thioredoxin (Trx1), a very important protein for regulating intracellular redox reactions, was immobilized on iron oxide superparamagnetic nanoparticles previously coated with 3-aminopropyltriethoxysilane (APTS) via covalent coupling using the EDC (1-ethyl-3-{3-dimethylaminopropyl}carbodiimide) method. The system was extensively characterized by atomic force microscopy, vibrational and magnetic techniques. In addition, gold nanoparticles were also employed to probe the exposed groups in the immobilized enzyme based on the SERS (surface enhanced Raman scattering) effect, confirming the accessibility of the cysteines residues at the catalytic site. For the single coated superparamagnetic nanoparticle, by monitoring the enzyme activity with the Ellman reagent, DTNB=5,5`-dithio-bis(2-15 nitrobenzoic acid), an inhibitory effect was observed after the first catalytic cycle. The inhibiting effect disappeared after the application of an additional silicate coating before the AFTS treatment, reflecting a possible influence of unprotected iron-oxide sites in the redox kinetics. In contrast, the doubly coated system exhibited a normal in-vitro kinetic activity, allowing a good enzyme recovery and recyclability. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

We propose the use of functionalized superparamagnetic nanoparticles for capturing, and transporting analytes, in association with an external miniature magnet to deposit such nanocarrier species at the electrode surface. This approach can be employed for the electroanalytical determination of chemical species capable of interacting with the nanoparticles, or in the opposite case, to block their response at the electrode surface. The concept was successfully demonstrated by using aminofunctionalized nanoparticles to block the discharge of hexacyanoferrate(II) ions, and to enhance the signals of aquapentacyanoferrate(II) ions via coordination to the surface amino groups. Selective analysis was also performed for silver ions, surpassing the stripping methods in terms of versatility and usefulness. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The successful immobilization of enzymes such as horseradish peroxidase (HRP) in solid films is essential for applications in sensors and for fundamental studies aimed at identifying possible biotechnological devices. In this study we show that HRP can be immobilized in alternated layers with chitosan as the template material. The activity of HRP in HRP/chitosan films was preserved for several weeks, and could be detected optically upon monitoring the reaction with pyrogallol. The morphology of the film displayed stripes that disappeared after reaction with pyrogallol. Though the activity in the HRP/chitosan film was lower than in a homogeneous solution or in an LB film investigated earlier, the response was linear for a considerable period of time, which may be advantageous for sensing hydrogen peroxide. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Electroactive nanostructured membranes have been produced by the layer-by-layer (LbL) technique, and used to make electrochemical enzyme biosensors for glucose by modification with cobalt hexacyanoferrate redox mediator and immobilisation of glucose oxidase enzyme. Indium tin oxide (ITO) glass electrodes were modified with up to three bilayers of polyamidoamine (PAMAM) dendrimers containing gold nanoparticles and poly(vinylsulfonate) (PVS). The gold nanoparticles were covered with cobalt hexacyanoferrate that functioned as a redox mediator, allowing the modified electrode to be used to detect H(2)O(2), the product of the oxidase enzymatic reaction, at 0.0 V vs. SCE. Enzyme was then immobilised by cross-linking with glutaraldehyde. Several parameters for optimisation of the glucose biosensor were investigated, including the number of deposited bilayers, the enzyme immobilisation protocol and the concentrations of immobilised enzyme and of the protein that was crosslinked with PAMAM. The latter was used to provide glucose oxidase with a friendly environment, in order to preserve its bioactivity. The optimised biosensor, with three bilayers, has high sensitivity and operational stability, with a detection limit of 6.1 mu M and an apparent Michaelis-Menten constant of 0.20 mM. It showed good selectivity against interferents and is suitable for glucose measurements in natural samples. (C) 2008 Elsevier B.V. All rights reserved.