109 resultados para FLUORIDE CONCENTRATIONS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

It has been suggested that fluoride products are able to reduce erosive tooth wear. Thus, the purpose of this in vitro study was to evaluate the effect of dentifrices with different fluoride concentrations as well as of a low-fluoridated dentifrice supplemented with trimetaphosphate (TMP) on enamel erosion and abrasion. One hundred twenty bovine enamel blocks were assigned to the following experimental dentifrices: placebo, 1,100 mu g F/g, 500 mu g F/g plus 3% TMP and 5,000 mu g F/g. The groups of enamel blocks were additionally subdivided into conditions of erosion (ERO) and of erosion plus abrasion (ERO + ABR). For 7 days, the blocks were subjected to erosive challenges (immersion in Sprite (R) 4 times a day for 5 min each time) followed by a remineralizing period (immersion in artificial saliva between erosive challenges for 2 h). After each erosive challenge, the blocks were exposed to slurries of the dentifrices (10 ml/sample for 15 s). Sixty of the blocks were additionally abraded by brushing using an electric toothbrush (15 s). The alterations of the enamel were quantified using the Knoop hardness test and profilometry (measurements in micrometers). The data were analyzed using a 2-way ANOVA test followed by a Bonferroni correction (p < 0.05). In in vitro conditions, the 5,000 mu g F/g and 500 mu g F/g plus 3% TMP dentifrices had a greater protective effect when compared with the 1,100 mu g F/g dentifrice, under both ERO and ERO + ABR conditions. The results suggest that dentifrices alone are not capable of completely inhibiting tooth wear. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To evaluate the influence of dentifrice pH and fluoride (F) concentration on F uptake by plaque and nails, two sets of 5-to 6-year-old children were randomly allocated into four groups, according to the type of dentifrice they had been using for 1 year: (1) experimental liquid dentifrice (ELD), 1,100 ppm F, pH 7.0; (2) ELD, 1,100 ppm F, pH 4.5; (3) ELD, 550 ppm F, pH 4.5, and (4) commercial toothpaste, 1,100 ppm F, pH 7.0. In one set of children, nails were clipped. In the second, plaque samples were collected 1 h after the last use of dentifrice. F concentration in plaque and nails was analyzed. Plaque F concentration was significantly lower in group 4 than in groups 1-3. Nail F concentration was significantly higher in group 4, and significantly lower in group 3, than in group 1 or 2. Plaque F uptake was influenced significantly by dentifrice consistency and nonsignificantly by pH and F concentration. Reduction of dentifrice pH did not affect nail F concentration. Copyright (C) 2009 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

This study investigated the variations in human plasma fluoride concentrations ([F]) and sought to determine the causes. Five subjects (27-33 years old) received a low-F diet during the 5 days of the study. Plasma samples and urine were collected every 3 h from 8 a.m. to 8 p.m. F, PTH, Ca and P were analyzed with the electrode, by chemiluminescence, AAS and colorimetry, respectively. A trend for the plasma [F] was found. The peak [F], 0.55 +/- 0.11 mu mol L(-1), occurred at 11 a.m. and the lowest [F], 0.50 +/- 0.06 mu mol L(-1) occurred between 5 and 8 p.m. Plasma [F] were positively correlated with urinary F excretion rates and with serum PTH levels, but not with the Ca or P levels. Serum PTH levels were positively correlated with urinary F excretion rates and negatively correlated with plasma Ca. The results suggest that the renal system seems to control the daily fluctuations in plasma [F]. (c) 2008 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Higher blood lead (BPb) levels have been reported in children living in communities that receive fluoride-treated water. Here, we examined whether fluoride co-administered with lead increases BPb and lead concentrations in calcified tissues in Wistar rats exposed to this metal from the beginning of gestation. We exposed female rats and their offspring to control water (Control Group), 100 mg/L of fluoride (F Group), 30 mg/L of lead (Pb Group), or 100 mg/L of fluoride and 30 mg/L of lead (F+ Pb Group) from 1 week prior to mating until offspring was 81 days old. Blood and calcified tissues (enamel, dentine, and bone) were harvested at day 81 for lead and fluoride analyses. Higher BPb concentrations were found in the F+ Pb Group compared with the Pb Group (76.7 +/- 11.0 mu g/dL vs. 22.6 +/- 8.5 mu g/dL, respectively: p <0.001). Two-to threefold higher lead concentrations were found in the calcified tissues in the F+ Pb Group compared with the Pb Group (all p <0.001). Fluoride concentrations were similar in the F and in the F+ Pb Groups. These findings show that fluoride consistently increases BPb and calcified tissues Pb concentrations in animals exposed to low levels of lead and suggest that a biological effect not yet recognized may underlie the epidemiological association between increased BPb lead levels in children living in water-fluoridated communities. (C) 2010 Elsevier Ireland Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

This in situ/ex vivo study assessed the effect of different concentrations of fluoride in dentifrices on dentin subjected to erosion or to erosion plus abrasion. Ten volunteers took part in this crossover and double-blind study performed in 3 phases (7 days). They wore acrylic palatal appliances containing 4 bovine dentin blocks divided in two rows: erosion and erosion plus abrasion. The blocks were subjected to erosion by immersion ex vivo in a cola drink (60 s, pH 2.6) 4 times daily. During this step, the volunteers brushed their teeth with one of three dentifrices D (5,000 ppm F, NaF, silica); C (1,100 ppm F, NaF, silica) and placebo (22 ppm F, silica). Then, the respective dentifrice slurry (1: 3) was dripped on dentin surfaces. While no further treatment was performed in one row, the other row was brushed using an electric toothbrush for 30 s ex vivo. The appliances were replaced in the mouth and the volunteers rinsed with water. Dentin loss was determined by profilometry and analyzed by 2-way ANOVA/Bonferroni test (alpha = 0.05). Dentin loss after erosive-abrasive wear was significantly greater than after erosion alone. Wear was significantly higher for the placebo than for the D and C dentifrices, which were not significantly different from each other. It can be concluded that the presence of fluoride concentrations around 1,100 ppm in dentifrices is important to reduce dentin wear by erosion and erosion + abrasion, but the protective effect does not increase with fluoride concentration. Copyright (C) 2008 S. Karger AG, Basel.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Previous studies have indicated that the use of low-fluoride dentifrices could lead to proportionally higher plaque fluoride levels when compared with conventional dentifrices. This double-blind, randomized, crossover study determined the effects of placebo, low-fluoride, and conventional dentifrices on plaque fluoride concentrations ([F]) in children living in communities with 0.04, 0.72, and 3.36 ppm F in the drinking water. Children used the toothpastes twice daily, for 1 wk. Samples were collected 1 and 12 hrs after the last use of dentifrices and were analyzed for fluoride and calcium. Similar increases were found 1 hr after the children brushed with low-fluoride (ca. 1.9 mmol F/kg) and conventional (ca. 2.4 mmol F/kg) dentifrices in the 0.04- and 0.72-ppm-F communities. Despite the fact that the increases were less pronounced in the 3.36-ppm-F community, our results indicate that the use of a low-fluoride dentifrice promotes a proportionally higher increase in plaque [F] when compared with that achieved with a conventional dentifrice, based on dose-response considerations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Fluoride in drinking water may be present from natural sources or added as sodium fluoride (NaF), sodium silicofluoride (Na2SiF6) or fluorosilicic acid (H2SiF6). Results from an early study with rats suggested that, when ingested as Na2SiF6, the absorption and excretion of fluoride were greater than when ingested as NaF. Objective: The present single-blind, crossover study with 10 adults was done to determine three key pharmacokinetic parameters: the maximum plasma fluoride concentrations (C-max), the elapsed time to reach the maximum concentrations (T-max) and the 6-h areas under the time-plasma concentration curves (AUCs) after ingestion of 500 ml, of water containing 0.67 or 5.45 mg F/L present naturally or added as NaF or H2SiF6. Design: Blood was collected prior to and at nine time points during 6 h after ingestion of the test solutions. Plasma was analysed by electrode after HMDS-facilitated diffusion and the data were analysed for statistically significant differences using repeated measures ANOVA. Results: The C-max, T-max and AUC values after ingestion of the solutions containing natural fluoride, NaF or H2SiF6 did not differ significantly at either dose level. Further, the Tmax values associated with the 0.67 and SAS mg/L solutions did not differ significantly indicating that the absorption, distribution and elimination rates were not affected by the dose size. Conclusions: Considered together with published reports, the present findings support the conclusion that the major features of fluoride metabolism are not affected differently by the chemical compounds commonly used to fluoridate water nor are they affected by whether the fluoride is present naturally or added artificially. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

It has been suggested that fluoride retention in plaque is limited by available binding sites. We determined the effects of fluoridated or placebo dentifrices on plaque and salivary fluoride concentrations [F]s in communities with different water fluoride concentrations (0.04, 0.85, 3.5 ppm). After one week of dentifrice use, samples were collected 1.0 and 12 hrs after the last use of dentifrices. After the use of fluoridated dentifrice, plaque fluoride concentrations were higher at both times, except at 12 hrs in the 3.5-ppm community. Plaque concentrations at 1.0 hr after the use of fluoridated dentifrice increased almost constantly (6.5 mmol/kg), but then decreased approximately 50% at 12 hrs in each community. Unlike previous studies, the present findings suggest that the use of fluoridated dentifrice is likely to increase plaque fluoride concentrations significantly for up to 12 hrs in areas where the water contains fluoride close to 1.0 ppm. As previously reported, plaque fluoride concentrations were directly related to calcium concentrations.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluated the effect of fluoride oil bone fluoride levels and on ectopic bone formation in young and old rats. Eighty male Wistar rats were assigned to four groups (n = 20/g), which differed according to the fluoride concentration in their drinking water (0, 5, 15 and 50 mg/l). When half of the rats were 90 days old, demineralized bone matrix (DBM) was implanted. The other rats received DBM implants when they were 365 day`s old. The animals were killed 28 days after. Fluoride in the femur surface, whole femur and plasma was analyzed with an electrode, The implants were analyzed histomorphometrically. Data were tested for statistically, significant differences by ANOVA, Tukey`s test, t-test and linear regression (p < 0.05). Increases in plasma, femur surface and whole femur fluoride concentrations were observed cis water fluoride levels increased. There was also a trend for increase in plasina and femur fluoride concentrations cis age increased. Significant positive correlations were found between plasma and femur surface, plasina and femur and femur surface and femur fluoride, concentrations. The morphometric analyses indicated all increase in bone formation for younger rats that received 5 mg/l of fluoride in the drinking water. However, this was not statistically, significant. The younger rats that received 50 mg/l of fluoride showed impairment in bone formation. Bone formation was not significantly affected among the older rats. The results suggest that lower doses of fluoride in the drinking water, which slightly increase plasma fluoride levels, may have an anabolic effect oil bone formation in younger rats. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

This study evaluated the kinetics of fluoride in plasma, femur surface and the whole femur of rats, after chronic exposure to different water fluoride levels was interrupted. Four groups of Wistar rats received drinking water containing 0, 5, 15 or 50 mu g F/ml for 60 days (n = 50/group). The animals were euthanized immediately after exposure to fluoride or after 7, 30, 90 or 180 days (n = 10/subgroup). Plasma and femurs were collected. Fluoride on the femur surface, whole femur and plasma was analyzed with an electrode. Data were analyzed using ANOVA and Tukey`s test (p < 0.05). The increase in plasma fluoride levels was significant only for the 50 mu g F/ml group at 0 and 7 days. Regarding bone surface and whole bone, for most groups, significant increases in fluoride concentrations were observed with the increase in water fluoride concentrations at each time of euthanasia. For fluoride doses up to 15 mu g F/ml, femur surface fluoride levels were reestablished 180 days after the exposure was discontinued, which Was not valid for whole femur or for higher fluoride doses. We found a different kinetics of fluoride in plasma,femur surface and the whole femur of rats after chronic exposure to fluoride is interrupted. Copyright 2008 Prous Science, S.A.U. or its licensors. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

There has been no comparison between fluoride concentrations in urine and nails of children exposed to different sources of systemic fluoride. The aim of this study was to compare the relationship between fluoride intake with urinary fluoride excretion and fluoride concentrations in fingernails and toenails of children receiving fluoride from artificially fluoridated water (0.6-0.8 mg F/L, n = 25), naturally fluoridated water (0.6-0.9 mg F/L, n = 21), fluoridated salt (180-200 mg F/Kg, n = 26), and fluoridated milk (0.25 mg F, n = 25). A control population was included (no systemic fluoride, n = 24). Fluoride intake from diet and dentifrice, urinary fluoride excretion, and fluoride concentrations in fingernails/toenails were evaluated. Fluoride was analyzed with an ion-selective electrode. Urinary fluoride excretion in the control community was significantly lower when compared with that in the fluoridated cities, except for the naturally fluoridated community. However, the same pattern was not as evident for nails. Both urinary fluoride output and fluoride concentrations in fingernails/toenails were significantly correlated to total fluoride intake. However, the correlation coefficients for fluoride intake and urinary fluoride output were lower (r = 0.28, p < 0.01) than those observed for fingernails/toenails (r = 0.36, p < 0.001), suggesting that nails might be slightly better indicators of fluoride intake at the individual level.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: The aim of the present study was to evaluate the effect of CO(2) laser irradiation (10.6 mu m) at 0.3 J/cm(2) (0.5 mu s; 226 Hz) on the resistance of softened enamel to toothbrushing abrasion, in vitro. Methods: Sixty human enamel samples were obtained, polished with silicon carbide papers and randomly divided into five groups (n = 12), receiving 5 different surface treatments: laser irradiation (L), fluoride (AmF/NaF gel) application (F), laser prior to fluoride (LF), fluoride prior to laser (FL), non-treated control (C). After surface treatment they were submitted to a 25-day erosive-abrasive cycle in 100 ml sprite light (90 s) and brushed twice daily with an electric toothbrush. Between the demineralization periods samples were immersed in supersaturated mineral solution. At the end of the experiments enamel surface loss was determined using a contact profilometer and morphological analysis was performed using scanning electron microscopy (SEM). For SEM analysis of demineralization pattern, cross-sectional cuts of cycled samples were prepared. The data were statistically analysed by one-way ANOVA model with subsequent pairwise comparison of treatments. Results: Abrasive surface loss was significantly lower in all laser groups compared to both control and fluoride groups (p < 0.0001 in all cases). Amongst the laser groups no significant difference was observed. Softened enamel layer underneath lesions was less pronounced in laser-irradiated samples. Conclusion: Irradiation of dental enamel with a CO(2) laser at 0.3 J/cm(2) (5 mu s, 226 Hz) either alone or in combination with amine fluoride gel significantly decreases toothbrushing abrasion of softened-enamel, in vitro. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Objective: To evaluate whether the type of cola drink (regular or diet) could influence the wear of enamel subjected to erosion followed by brushing abrasion, Method and !Materials: Ten volunteers wore intraoral devices that each had eight bovine enamel blocks divided into four groups; ER, erosion with regular cola; EAR, erosion with regular cola plus abrasion; EL, erosion with light cola; and EAL, erosion with light cola plus abrasion, Each day for 1 week, half of each device was immersed in regular cola for 5 minutes, Then, two blocks were brushed using a fluoridated toothpaste and electric toothbrush for 30 seconds four times daily, Immediately after, the other half of the device was subjected to the same procedure using a light cola, The pH, calcium, phosphorus, and fluoride concentrations of the colas were analyzed using standard procedures, Enamel alterations were measured by profilometry. Data were tested using two-way ANOVA and Bonferroni test (P < .05), Results: Regarding chemical characteristics, light cola presented pH 3.0, 13.7 mg Ca/L, 15.5 mg P/L, and 0.31 mg F/L, while regular cola had pH 2.6, 32.1 mg Ca/L, 1:8.1 mg P/L, and 0.26 mg F/L, The light cola promoted less enamel loss (EL, 0.36 pm; EAL, 0.39 pm) than its regular counterpart (ER, 0.72 pm; EAR, 0.95 pm) for both conditions, There was not a significant difference (P > .05) between erosion and erosion plus abrasion for light cola, However, for regular cola, erosion plus abrasion resulted in higher enamel loss than erosion alone,.nclusion: The data suggest that light cola promoted less enamel wear even when erosion was followed by brushing abrasion, (Quintessence Int 2011;42:xxx-xx)()

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to assess the salivary residual effect of fluoride dentifrice on human enamel subjected to an erosive challenge. This crossover in situ study was performed in two phases (A and B), involving ten volunteers. In each phase, they wore acrylic palatal appliances, each containing 3 human enamel blocks, during 7 days. The blocks were subjected to erosion by immersion of the appliances in a cola drink for 5 minutes, 4 times a day. Dentifrice was used to brush the volunteers’ teeth, 4 times a day, during 1 minute, before the appliance was replaced into the mouth. In phases A and B the dentifrices used had the same formulation, except for the absence (PD) or presence (FD) of fluoride, respectively. Enamel alterations were determined using profilometry, microhardness (%SMHC), acid- and alkali-soluble F analysis. The data were tested using ANOVA (p < 0.05). The concentrations (mean ± SD) of alkali- and acid-soluble F (µgF/cm²) were, respectively, PD: 1.27ª ± 0.70/2.24A ± 0.36 and FD: 1.49ª ± 0.44/2.24A ± 0.67 (p > 0.05). The mean wear values (± SD, µm) were PD: 3.63ª ± 1.54 and FD: 3.54ª ± 0.90 (p > 0.05). The mean %SMHC values (± SD) were PD: 89.63ª ± 4.73 and FD: 87.28ª ± 4.01 (p > 0.05). Thus, we concluded that the residual fluoride from the fluoride-containing dentifrice did not protect enamel against erosion.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The influence of the solvent-evaporation rate on the formation of of. and P crystalline phases in solution-cast poly(vinylidene fluoride) (PVDF) films was systematically investigated. Films were crystallized from PVDF/N,N-dimethylformamide solutions with concentrations of 2.5, 5.0, 10, and 20 wt % at different temperatures. During crystallization, the solvent evaporation rate was monitored in situ by means of a semianalytic balance. With this system, it was possible to determine the evaporation rate for different concentrations and temperatures of the solution under specific ambient conditions (pressure, temperature, and humidity). Fourier-Transform InfraRed spectroscopy with Attenuated Total Reflectance revealed the P-phase content in the PVDF films and its dependence on previous evaporation rates. Based on the relation between the evaporation rate and the PVDF phase composition, a consistent explanation for the different amounts of P phase observed at the upper and lower sample surfaces is achieved. Furthermore, the role of the sample thickness has also been studied. The experimental results show that not only the temperature but also the evaporation rate have to be controlled to obtain the desired crystalline phases in solution-cast PVDF films. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 116: 785-791, 2010