3 resultados para FIBROSIS QUISTICA
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Hyperhomocysteinemia has been related to various diseases, including homocystinuria, neurodegenerative and hepatic diseases. In the present study we initially investigated the effect of chronic homocysteine administration on some parameters of oxidative stress, named total radical-trapping antioxidant potential, total antioxidant reactivity, catalase activity, chemiluminescence, thiobarbituric acid-reactive substances, and total thiol content in liver of rats. We also performed histological analysis, evaluating steatosis, inflammatory infiltration, fibrosis, and glycogen/glycoprotein content in liver tissue sections from hyperhomocysteinemic rats. Finally, we evaluated the activities of aminotransferases in liver and plasma of hyperhomocysteinemic rats. Wistar rats received daily subcutaneous injection of Hcy from their 6th to their 28th day of life. Twelve hours after the last injection the rats were sacrificed, liver and plasma were collected. Hyperhomocysteinemia decreased antioxidant defenses and total thiol content, and increased lipid peroxidation in liver of rats, characterizing a reliable oxidative stress. Histological analysis indicated the presence of inflammatory infiltrate, fibrosis and reduced content of glycogen/glycoprotein in liver tissue sections from hyperhomocysteinemic rats. Aminotransferases activities were not altered by homocysteine. Our data showed a consistent profile of liver injury elicited by homocysteine, which could contribute to explain, at least in part, the mechanisms involved in human liver diseases associated to hyperhomocysteinemia. (C) 2009 ISDN. Published by Elsevier Ltd. All rights reserved.
Resumo:
One of the early phases that lead to fibrosis progression is inflammation. Once this stage is resolved, fibrosis might be prevented. Bone marrow mononuclear cells (BMMCs) are emerging as a new therapy for several pathologies, including autoimmune diseases, because they enact immunosuppression. In this study we aimed to evaluate the role of BMMC administration in a model of kidney fibrosis induced by an acute injury. C57Bl6 mice were subjected to unilateral severe ischemia by clamping the left renal pedicle for 1 h. BMMCs were isolated from femurs and tibia, and after 6 h of reperfusion, 1 x 10(6) cells were administrated intraperitoneally. At 24 h after surgery, treated animals showed a significant decrease in creatinine and urea levels when compared with untreated animals. Different administration routes were tested. Moreover, interferon (IFN) receptor knockout BMMCs were used, as this receptor is necessary for BMMC activation. Labeled BMMCs were found in ischemic kidney on FACS analysis. This improved outcome was associated with modulation of inflammation in the kidney and systemic modulation, as determined by cytokine expression profiling. Despite non-amelioration of functional parameters, kidney mRNA expression of interleukin (IL)-6 at 6 weeks was lower in BMMC-treated animals, as were levels of collagen 1, connective tissue growth factor (CTGF), transforming growth factor-beta (TGF-beta) and vimentin. Protective molecules, such as IL-10, heme oxygenase 1 (HO-1) and bone morphogenetic 7 (BMP-7), were increased in treated animals after 6 weeks. Moreover, Masson and Picrosirius red staining analyses showed less fibrotic areas in the kidneys of treated animals. Thus, early modulation of inflammation by BMMCs after an ischemic injury leads to reduced fibrosis through modulation of early inflammation.
Resumo:
Mesenchymal stem cells (MSCs) have regenerative properties in acute kidney injury, but their role in chronic kidney diseases is still unknown. More specifically, it is not known whether MSCs halt fibrosis. The purpose of this work was to investigate the role of MSCs in fibrogenesis using a model of chronic renal failure. MSCs were obtained from the tibias and femurs of male Wistar-EPM rats. Female Wistar rats were subjected to the remnant model, and 2 vertical bar x vertical bar 10(5) MSCs were intravenously administrated to each rat every other week for 8 weeks or only once and followed for 12 weeks. SRY gene expression was observed in female rats treated with male MSCs, and immune localization of CD73(+)CD90(+) cells at 8 weeks was also assessed. Serum and urine analyses showed an amelioration of functional parameters in MSC-treated animals at 8 weeks, but not at 12 weeks. Masson`s trichrome and Sirius red staining demonstrated reduced levels of fibrosis in MSC-treated animals. These results were corroborated by reduced vimentin, type I collagen, transforming growth factor beta, fibroblast specific protein 1 (FSP-1), monocyte chemoattractant protein 1, and Smad3 mRNA expression and alpha smooth muscle actin and FSP-1 protein expression. Renal interleukin (IL)-6 and tumor necrosis factor alpha mRNA expression levels were significantly decreased after MSC treatment, whereas IL-4 and IL-10 expression levels were increased. All serum cytokine expression levels were decreased in MSC-treated animals. Taken together, these results suggested that MSC therapy can indeed modulate the inflammatory response that follows the initial phase of a chronic renal injury. The immunosuppressive and remodeling properties of MSCs may be involved in the decreased fibrosis in the kidney. STEM CELLS 2009;27:3063-3073