445 resultados para FED RATS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activities of glycogen phosphorylase and synthase during infusions of glucagon, isoproterenol, or cyanide in isolated liver of fed rats submitted to short-term insulin-induced hypoglycemia (IIH) was investigated. A condition of hyperinsulinemia/hypoglycemia was obtained with an intraperitoneal injection of regular insulin (1.0 U kg(-1)). The control group received ip saline. The experiments were carried out 60 min after insulin (IIH group) or saline (COG group) injection. The rats were anesthetized and after laparotomy, blood was collected from the vena cava for glucose and insulin measurements. The liver was their infused with glucagon (1 nM), isoproterenot (2 mu M), or cyanide (0.5 mM) during 20 min and a sample of the organ was collected for determination of the activities of glycogen phosphorylase and synthase 5 min after starting and 10 min after stopping the infusions. The infusions of cyanide, glucagons, and isoproterenol did not change the activities of glycogen synthase and glycogen phosphorylase. However, glycogen catabolism was decreased during the infusions of glucagon and isoproterenol in IIH rats, being more intense with isoproterenol (p < 0.05), than glucagon. It was concluded that short-term IIH promoted changes in the liver responsiveness of glycogen degradation induced by glucagon and isoproterenol without a change in the activities of glycogen phosphorylase and synthase. Copyright (c) 2008 John Wiley & Sons, Ltd.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The effects of inulin-type fructans (ITF)-containing yacon flour (YF) on Fe bioavailability from ferric pyrophosphate (FP) were evaluated in Fe-deficient rats using the Hb repletion efficiency (HRE) assay. Weanling male Wistar rats were fed a low-Fe diet (12 mg/kg) for 15 days followed by 2 weeks of Fe repletion with diets providing 35 mg Fe/kg as either ferrous sulphate (FS) or FP, supplemented with 7.5% ITF as either YF or Raftilose (RAF), a purified ITF. ITF increased caecal fermentation, whereas YF was more butyrogenic than RAF. ITF improved FIRE in FP-fed rats, and those fed YF had a higher relative biological value compared with those fed FP and RAF. Liver Fe was increased by ITF, but only YF led to values similar to those in the FS group. It is observed that ITF increased caecal fermentation and Fe bioavailability. These effects were more pronounced when YF was the ITF source. (C) 2010 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In vivo fatty acid synthesis and the pathways of glycerol-3-phosphate (G3P) production were investigated in brown adipose tissue (BAT) from rats fed a cafeteria diet for 3 weeks. In spite of BAT activation, the diet promoted an increase in the carcass fatty acid content. Plasma insulin levels were markedly increased in cafeteria diet-fed rats. Two insulin-sensitive processes, in vivo fatty acid synthesis and in vivo glucose uptake (which was used to evaluate G3P generation via glycolysis) were increased in BAT from rats fed the cafeteria diet. Direct glycerol phosphorylation, evaluated by glycerokinase (GyK) activity and incorporation of [U-(14)C]glycerol into triacylglycerol (TAG)-glycerol, was also markedly increased in BAT from these rats. In contrast, the cafeteria diet induced a marked reduction of BAT glyceroneogenesis, evaluated by phosphoenolpyruvate carboxykinase-C activity and incorporation of [1-(14)C]pyruvate into TAG-glycerol. BAT denervation resulted in an approximately 50% reduction of GyK activity, but did not significantly affect BAT in vivo fatty acid synthesis, in vivo glucose uptake, or glyceroneogenesis. The data suggest that the supply of G3P for BAT TAG synthesis can be adjusted independently from the sympathetic nervous system and solely by reciprocal changes in the generation of G3P via glycolysis and via glyceroneogenesis, with no participation of direct phosphorylation of glycerol by GyK.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Epidemiological studies have suggested that cola beverage consumption may affect bone metabolism and increase bone fracture risk. Experimental evidence linking cola beverage consumption to deleterious effects on bone is lacking. Herein, we investigated whether cola beverage consumption from weaning to early puberty delays the rate of reparative bone formation inside the socket of an extracted tooth in rats. Twenty male Wistar rats received cola beverage (cola group) or tap water (control group) ad libitum from the age of 23 days until tooth extraction at 42 days and euthanasia 2 and 3 weeks later. The neoformed bone volume inside the alveolar socket was estimated in semi-serial longitudinal sections using a quantitative differential point-counting method. Histological examination suggested a decrease in the osteogenic process within the tooth sockets of rats from both cola groups, which had thinner and sparser new bone trabeculae. Histometric data confirmed that alveolar bone healing was significantly delayed in cola-fed rats at three weeks after tooth extraction (ANOVA, p = 0.0006, followed by Tukey's test, p < 0.01). Although the results of studies in rats cannot be extrapolated directly to human clinical dentistry, the present study provides evidence that cola beverage consumption negatively affect maxillary bone formation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Souza MA, Souza MH, Palheta RC Jr, Cruz PR, Medeiros BA, Rola FH, Magalhaes PJ, Troncon LE, Santos AA. Evaluation of gastrointestinal motility in awake rats: a learning exercise for undergraduate biomedical students. Adv Physiol Educ 33: 343-348, 2009; doi: 10.1152/advan.90176.2008.-Current medical curricula devote scarce time for practical activities on digestive physiology, despite frequent misconceptions about dyspepsia and dysmotility phenomena. Thus, we designed a hands-on activity followed by a small-group discussion on gut motility. Male awake rats were randomly submitted to insulin, control, or hypertonic protocols. Insulin and control rats were gavage fed with 5% glucose solution, whereas hypertonic-fed rats were gavage fed with 50% glucose solution. Insulin treatment was performed 30 min before a meal. All meals (1.5 ml) contained an equal mass of phenol red dye. After 10, 15, or 20 min of meal gavage, rats were euthanized. Each subset consisted of six to eight rats. Dye recovery in the stomach and proximal, middle, and distal small intestine was measured by spectrophotometry, a safe and reliable method that can be performed by minimally trained students. In a separate group of rats, we used the same protocols except that the test meal contained (99m)Tc as a marker. Compared with control, the hypertonic meal delayed gastric emptying and gastrointestinal transit, whereas insulinic hypoglycemia accelerated them. The session helped engage our undergraduate students in observing and analyzing gut motor behavior. In conclusion, the fractional dye retention test can be used as a teaching tool to strengthen the understanding of basic physiopathological features of gastrointestinal motility.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Sucrose-fed rats, a model of metabolic syndrome, are characterized by insulin resistance, obesity, hypertension, and high plasma levels of triacylglycerols and angiotensin II (Ang II). However, whether tissue renin-angiotensin system (RAS) is altered in metabolic syndrome is unclear. To study this issue, food ad libitum and water (C) or 20% sucrose solution (SC) were given to adult male Wistar rats, for 30 days. Body weight (BW), blood pressure (BP), epididymal adipose tissue (EPI) mass, rate of in vivo fatty acid (FA) synthesis in EPI, circulating glucose, insulin, leptin, angiotensins I and II, triacylglycerols, and plasma renin (PRA) and angiotensin-converting enzyme (ACE) activities were evaluated. In kidneys and EPI, gene and protein expression of type 1 (AT(1)) and 2 (AT(2)) Ang II receptors, ACE, angiotensinogen (ACT) as well as protein expression of angiotensin-converting enzyme 2 (ACE2) were determined. In both tissues, Ang I, Ang II and Ang-(1-7) contents were also measured by HPLC. In SC rats higher BP, EPI mass, circulating triacylglycerols, insulin, leptin, PRA and, Ang II were found. In EPI, the rate of in vivo FA synthesis was associated with increased Ang-(1-7), protein expression of AT(1) and AT(2) receptors, ACE2, ACT, and gene expression of ACT although a reduction in ACE activity and in adipose Ang I and Ang II contents was observed. In kidneys, AT(1) and AT(2), ACE and ACT gene and protein expression as well as protein expression of ACE2 were unaltered while Ang II, Ang-(1-7) and ACE activity increased. These RAS component changes seem to be tissue specific and possibly are related to enhancement of FA synthesis, EPI mass and hypertension. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Background and purpose: Control of food intake is a complex behaviour which involves many interconnected brain structures. The present work assessed if the noradrenergic system in the lateral septum (LS) was involved in the feeding behaviour of rats. Experimental approach: In the first protocol, the food intake of rats was measured. Then non-food-deprived animals received either 100 nL of 21 nmol of noradrenaline or vehicle unilaterally in the LS 10 min after local 10 nmol of WB4101, an alpha(1)-adrenoceptor antagonist, or vehicle. In the second protocol, different doses of WB4101 (1, 10 or 20 nmol in 100 nL) were microinjected bilaterally into the LS of rats, deprived of food for 18 h and food intake was compared to that of satiated animals. Key results: One-sided microinjection of noradrenaline into the LS of normal-fed rats evoked food intake, compared with vehicle-injected control animals, which was significantly reduced by alpha(1)-adrenoceptor antagonism. In a further investigation, food intake was significantly higher in food-deprived animals, compared to satiated controls. Pretreatment of the LS with WB4101 reduced food intake in only food-deprived animals in a dose-related manner, suggesting that the LS noradrenergic system was involved in the control of food intake. Conclusion and implications: Activation by local microinjection of noradrenaline of alpha(1)-adrenoceptors in the LS evoked food intake behaviour in rats. In addition, blockade of the LS alpha(1)-adrenoceptors inhibited food intake in food-deprived animals, suggesting that the LS noradrenergic system modulated food intake behaviour and satiation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Chronic and excessive alcohol consumption has been related to an increased risk of several cancers, including that of the liver; however, studies in animal models have yet to conclusively determine whether ethanol acts as a tumor promoter in hepatic tumorigenesis. We examined whether prolonged alcohol consumption could act as a hepatic tumor promoter after initiation by diethylnitrosamine (DEN) in a rat model. Male Sprague-Dawley rats were injected with 20 mg DEN/kg body weight 1 wk before introduction of either an ethanol liquid diet or an isoenergic control liquid diet. Hepatic pathological lesions, hepatocyte proliferation, apoptosis, PPAR alpha and PPAR gamma, and plasma insulin-like growth factor 1 IGF-1) levels were assessed after 6 and 10 mo. Mean body and liver weights, plasma IGF-1 concentration, hepatic expressions of proliferating cellular nuclear antigen and Ki-67, and cyclin D1 in ethanol-fed rats were all significantly lower after 10 mo of treatment compared with control rats. In addition, levels of hepatic PPAR gamma protein, not PPAR alpha, were significantly higher in the ethanol-fed rats after prolonged treatment. Although ethanol feeding also resulted in significantly fewer altered hepatic foci, hepatocellular adenoma was detected in ethanol-fed rats at 10 mo, but not in control rats given the same dose of DEN. Together, these results indicate that chronic, excessive ethanol consumption impairs normal hepatocyte proliferation, which is associated with reduced IGF-1 levels, but promotes hepatic carcinogenesis. J. Nutr. 141: 1049-1055, 2011.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Glycogen content of white and red skeletal muscles, cardiac muscle, and liver was investigated in conditions where changes in plasma levels of non-esterified fatty acids (NEFA) occur. The experiments were performed in fed and 12 and 48 h-fasted rats. The animals were also submitted to swimming for 10 and 30 min. Glycogen content was also investigated in both pharmacologically induced low plasma NEFA levels fasted rats and pharmacologically induced high plasma NEFA levels fed rats. The participation of Akt and glycogen synthase kinase-3 (GSK-3) in the changes observed was investigated. Plasma levels of NEFA, glucose, and insulin were determined in all conditions. Fasting increased plasma NEFA levels and reduced glycogen content in the liver and skeletal muscles. However, an increase of glycogen content was observed in the heart under this condition. Akt and GSK-3 phosphorylation was reduced during fasting in the liver and skeletal muscles but it remained unchanged in the heart. Our results suggest that in conditions of increased plasma NEFA levels, changes in insulin-stimulated phosphorylation of Akt and GSK-3 and glycogen content vary differently in liver, skeletal muscles, and heart. Akt and GSK-3 phosphorylation and glycogen content are decreased in liver and skeletal Muscles, but in the heart it remain unchanged (Akt and GSK-3 phosphorylation) or increased (glycogen content) due to consistent increase of plasma NEFA levels. Copyright (C) 2009 John Wiley & Sons, Ltd.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Microsomal triglyceride transfer protein (MTP) is a protein that exerts a central regulatory role in very-low-density lipoprotein (VLDL) assembly and secretion. The purpose of the study was to investigate the effects of all exercise-training program oil hepatic content of MTP and its relation to hepatic VLDL-triglyceride (VLDL-TG) production in response to lipid infusion. Female rats either fed a standard (SD) or all obesity-induced high-fat (HF; 43% as energy) diet for 8 weeks were Subdivided into sedentary (Sed) and trained (Tr) groups. Exercise training consisted Of Continuous running on a motor-driven rodent treadmill 5 times/week for 8 weeks. At the end of this period, all rats in the fasted state were intravenously infused with a 20% Solution of intralipid for 3 h followed by all injection of Triton WR1339 to block lipoprotein lipase. An additional control grout) consisting of Sed rats fed the SD diet was infused with saline (0.9% NaCl). Plasma TG accumulation was thereafter measured during 90 min to estimate VLDL-TG production. Under HF diet, hepatic MTP content and plasma TG accumulation after Triton blockade (thus reflecting VLDL-TG synthesis and secretion) were not changed in Sed rats, whereas liver TG content was highly increased (similar to 90%; p<0.01). Oil the other hand, training reduced liver MTP protein content in both SD(-18%) and HF(-23%) fed rats(p<0.05). Plasma VLDL-TG accumulation was also lower (p<0.05) in Tr than in Sed rats fed the HF diet. This effect was not observed in SD fed rats. Furthermore, the exercise training-induced decrease in VLDL-TG production in HF rats was associated with a decrease in liver TG levels. It is Concluded that in addition to a reduction in liver TG content, exercise training reduces VLDL synthesis and/or secretion in HF fed rats probably via MTP regulation.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Objective: This study reports the effects of feeding with a combination of inulin-type fructans (ITF) and fish oil (FO) on mineral absorption and bioavailability as part of a semipurified diet offered to rats. Methods: Male Wistar rats (n = 24) were fed a 15% lipid diet (soybean oil [SO] or a 1:0.3 fish:soybean oil mixture [FSO]) and diets containing the same sources of lipids supplemented with 10% ITF (Raftilose Synergy 1) ad libitum for 15 d. Feces and urine were collected for mineral analyses during the last 5 d of the test period. Fatty acid composition was determined in liver and cecal mucosa homogenates. Liver and bone mineral analyses were performed by atomic absorption spectrophotometry. Bone biomechanical analyses were evaluated by a 3-point bending test. Results: Compared with the controls, ITF-fed rats had enlarged ceca and a significant decrease in cecal content pH (P < 0.001). The apparent mineral absorption was improved in these rats, and this effect was enhanced by dietary combination with FO for all minerals except for magnesium. Addition of ITF to the diet resulted in higher bone mineral content (calcium and zinc) and bone strength, but increased bone mineral content was only statistically significant in FO-fed animals. A decrease in liver iron stores (P = 0.015) was observed in rats fed FO, considering that ITF consumption returned to levels comparable to the SO control group. Conclusion: These findings confirm the positive influence of ITF on mineral bioavailability, which was potentiated by addition of FO to the diet. (C) 2009 Published by Elsevier Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

AIM: To investigate the effects of malnutrition and refeeding on the P2X(2) receptor, nitric oxide synthase (NOS), calretinin, calbindin and choline acetyltransferase (ChAT) in neurons of the rat ileum. METHODS: We analyzed the co-localization, numbers and sizes of P2X(2)-expressing neurons in relation to NOS-IR (immunoreactive), calbindin-IR, ChAT-IR, and calretinin-IR neurons of the myenteric and submucosal plexus. The experimental groups consisted of: (1) rats maintained on normal feed throughout pregnancy until 42 d post-parturition (N); (2) rats deprived of protein throughout pregnancy and 42 d post-parturition (D); and (3) rats undernourished for 21 d post-parturition and then given a protein diet from days 22 to 42 (DR). The myenteric and submucosal plexuses were evaluated by double labeling by immunohistochemical methods for P2X(2) receptor, NOS, ChAT, calbindin and calretinin. RESULTS: We found similar P2X(2) receptor immunoreactivity in the cytoplasm and surface membranes of myenteric and submucosal neurons from the N, D and DR groups. Double labeling of the myenteric plexus demonstrated that approximately 100% of NOS-IR, calbindin-IR, calretinin-IR and ChAT-IR neurons in all groups also expressed the P2X(2) receptor. In the submucosal plexus, the calretinin-IR, ChAT-IR and calbindinIR neurons were nearly all immunoreactive for the P2X(2) receptor. In the myenteric plexus, there was a 19% increase in numbers per cm(2) for P2X(2) receptor-IR neurons, 64% for NOS-IR, 84% for calretinin-IR and 26% for ChAT-IR neurons in the D group. The spatial density of calbindin-IR neurons, however, did not differ among the three groups. The submucosal neuronal density increased for calbindin-IR, calretinin-IR and ChAT-IR neurons. The average size of neurons in the myenteric plexus neurons in the D group was less than that in the controls and, in the re-fed rats; there was a 34% reduction in size only for the calretinin-IR neurons. CONCLUSION: This work demonstrates that expression of the P2X(2) receptor is present in inhibitory, intrinsic primary afferent, cholinergic secretomotor and vasomotor neurons. Undernutrition affected P2X(2) receptor expression in the submucosal plexus, and neuronal and size. These changes were rescued in the re-fed rats. (C) 2010 Baishideng. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

OBJECTIVE: Because autonomic dysfunction has been found to lead to cardiometabolic disorders and because studies have reported that simvastatin treatment has neuroprotective effects, the objective of the present study was to investigate the effects of simvastatin treatment on cardiovascular and autonomic changes in fructose-fed female rats. METHODS: Female Wistar rats were divided into three groups: controls (n=8), fructose (n=8), and fructose+ simvastatin (n=8). Fructose overload was induced by supplementing the drinking water with fructose (100 mg/L, 18 wks). Simvastatin treatment (5 mg/kg/day for 2 wks) was performed by gavage. The arterial pressure was recorded using a data acquisition system. Autonomic control was evaluated by pharmacological blockade. RESULTS: Fructose overload induced an increase in the fasting blood glucose and triglyceride levels and insulin resistance. The constant rate of glucose disappearance during the insulin intolerance test was reduced in the fructose group (3.4+ 0.32%/min) relative to that in the control group (4.4+ 0.29%/min). Fructose+simvastatin rats exhibited increased insulin sensitivity (5.4+0.66%/min). The fructose and fructose+simvastatin groups demonstrated an increase in the mean arterial pressure compared with controls rats (fructose: 124+2 mmHg and fructose+simvastatin: 126 + 3 mmHg vs. controls: 112 + 2 mmHg). The sympathetic effect was enhanced in the fructose group (73 + 7 bpm) compared with that in the control (48 + 7 bpm) and fructose+simvastatin groups (31+8 bpm). The vagal effect was increased in fructose+simvastatin animals (84 + 7 bpm) compared with that in control (49 + 9 bpm) and fructose animals (46+5 bpm). CONCLUSION: Simvastatin treatment improved insulin sensitivity and cardiac autonomic control in an experimental model of metabolic syndrome in female rats. These effects were independent of the improvements in the classical plasma lipid profile and of reductions in arterial pressure. These results support the hypothesis that statins reduce the cardiometabolic risk in females with metabolic syndrome.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Feeding mineral-deficient diets enhances absorptive efficiency as an attempt of the body to compensate for the lack of an essential nutrient. Under certain circumstances, it does not succeed, and nutritional deficiency is produced Our hypothesis was that mulin-type fructans (ITF), which arc known to affect mineral absorption, could increase Ca and Fe bioavailability in Ca- and Fe-deficient rats. Male Wistar rats (n = 48, 4 weeks old) were assigned to I of 8 groups derived from 2 x 2 x 2 factorial design with 2 levels of added Fe (0 and 35 mg/kg), Ca (0 and 5 g/kg), and ITF (0 and 100 g/kg) for 33 days. The Fe status (hemoglobin, serum Fe, total Fe-binding capacity, transferrin saturation, liver minerals) was evaluated. Tibia minerals (Ca, Mg, and Zn), bone strength, and histomorphometry were determined In nondeficient rats, ITF supplementation did not affect Fe status or organ minerals, with the exception of tibia Mg Moreover, ITF improved bone resilience and led to a reduction in eroded surface per body surface and number of osteoclasts per area In Ca-deficient rats, ITF increased liver (Fe and Zn) and tibia (Zn) mineral levels but impaired tibia Mg, yield load, and resilience. In conclusion, ITF worsened the tibia Mg levels and elastic properties when supplemented in Ca-deficient diets In contrast, although bone Ca was not affected in nondeficient rats under the present experimental conditions, bone quality improved, as demonstrated by a moderate reduction in femur osteoclast resorption and significant increases in tibia Mg content and elasticity. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

The aim of the present study was to examine the effects of creatine supplementation on liver fat accumulation induced by a high-fat diet in rats. Rats were fed 1 of 3 different diets for 3 wk: a control liquid diet (C), a high-fat liquid diet (HF), or a high-fat liquid diet supplemented with creatine (HFC). The C and HF diets contained, respectively, 35 and 71% of energy derived from fat. Creatine supplementation involved the addition of 1% (wt:v) of creatine monohydrate to the liquid diet. The HF diet increased total liver fat concentration, liver TG, and liver TBARS and decreased the hepatic S-adenosylmethionine (SAM) concentration. Creatine supplementation normalized all of these perturbations. Creatine supplementation significantly decreased the renal activity of L-arginine:glycine amidinotransferase and plasma guanidinoacetate and prevented the decrease in hepatic SAM concentration in rats fed the HF diet. However, there was no change in either the phosphatidylcholine:phosphatidylethanolamine (PE) ratio or PE N-methyltransferase activity. The HF diet decreased mRNA for PPAR as well as 2 of its targets, carnitine palmitoyltransferase and long-chain acylCoA dehydrogenase. Creatine supplementation normalized these mRNA levels. In conclusion, creatine supplementation prevented the fatty liver induced by feeding rats a HF diet, probably by normalization of the expression of key genes of beta-oxidation. J. Nutr. 141: 1799-1804, 2011.