149 resultados para External-beam Irradiation
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background and purpose: To evaluate biochemical control and treatment related toxicity of patients with localized adenocarcinoma of the prostate treated with high dose-rate brachytherapy (HDRB) combined with conventional 2D or 3D-conformal external beam irradiation (EBI). Material and methods: Four-hundred and three patients treated between December 2000 and March 2004. HDRB was delivered with three fractions of 5.5-7 Gy with a single implant, followed by 45 Gy delivered with 2D or 3D conformal EBI. Results: The median follow-up was 48.4 months. Biochemical failure (BF) occurred in 9.6% according to both ASTRO and Phoenix consensus criteria. Mean time to relapse was 13 and 26 months, respectively. The 5-year BF free survival using the ASTRO criteria was 94.3%, 86.9% and 86.6% for the low, intermediate and high risk groups, respectively; using Phoenix criteria, 92.4%, 88.0% and 85.3%, respectively. The only predictive factor of BF in the multivariate analysis by both ASTRO and Phoenix criteria was the presence of prostate nodules detected by digital palpation, and patients younger than 60 years presented a higher chance of failure using Phoenix criteria only. Conclusions: Treatment scheme is feasible and safe with good efficacy. (C) 2011 Elsevier Ireland Ltd All rights reserved. Radiotherapy and Oncology 98 (2011) 169-174
Resumo:
Wild chamomile (Matricaria chamomilla L.) is one of the most popular herbal materials with both internal and external use to cure different health disturbances. As a consequence of its origin, chamomile could carry various microbial contaminants which offer different hazards to the final consumer. Reduction of the microbial load to the in force regulation limits represents an important phase in the technological process of vegetal materials, and the electron beam treatment might be an efficient alternative to the classical methods of hygienic quality assurance. The purpose of the study was to analyze the potential application of the electron beam treatment in order to assure the microbial safety of the wild chamomile. Samples of chamomile dry inflorescences were treated in electron beam (e-beam) of 6 MeV mean energy, at room temperature and ambient pressure. Some loss of the chemical compounds with bioactive role could be noticed, but the number of microorganisms decreased as a function on the absorbed dose. Consequently, the microbial quality of studied vegetal material inflorescences was improved by e-beam. irradiation. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study was to assess the efficacy of rosemary and oregano extracts in avoiding oxidative changes in beef burgers, and to evaluate the fatty acid profile of these products after electron beam exposition. Extracts, individually or in combination, were added to beef burgers and compared to synthetic antioxidants commonly used in food (butylated hydroxytoluene, butylated hydroxyanisole). The ground beef were submitted to electron beam irradiation at doses of 0, 3.5 and 7 kGy, and stored for 90 days. At regular time intervals, lipid oxidation and fatty acid composition were evaluated through measurement of thiobarbituric acid-reactive substances (TBARS) and gas chromatography, respectively. The results indicate that, although the irradiation process triggers an increase in the lipid oxidation ratio expressed by TBARS values, great changes in the fatty acid profiles were not observed; instead, they continued to present characteristics very similar to that of non-irradiated beef. Thus, as irradiation doses of up to 7 kGy for frozen meat can make foods safe from foodborne pathogens, natural antioxidants derived from spices are able to reduce and avoid lipid changes that may cause a deterioration of the sensory quality of these foods, and these natural extracts offer a good choice for replacing synthetic additives.
Resumo:
Grafts of biological tissues have been used since the 1960s as an alternative to the mechanical heart prostheses. Nowadays, the most consolidated treatment to bovine pericardial (BP) bioprostheses is the crosslinking with glutaraldehyde (GA), although GA may induce calcification in vivo. In previous work, our group demonstrated that electron beam irradiation applied to lyophilized BP in the absence of oxygen promoted crosslinks among collagen fibers of BP tissue. In this work, the incorporation of silk fibroin (SF) and chitosan (CHIT) in the BP not treated with GA was studied. The samples were irradiated and then analyzed for their cytotoxicity and the ability of adhesion and growth of endothelial cells. Initially, all samples showed cytotoxicity. However, after a few washing cycles, the cytotoxicity due to acetic acid and ethanol residues was removed from the biomaterial making it suitable for the biofunctional test. The samples modified with SF/CHIT and electron beam irradiated favored the adhesion and growth of endothelial cells throughout the tissue.
Resumo:
The ultimate check of the actual dose delivered to a patient in radiotherapy can only be achieved by using in vivo dosimetry. This work reports a pilot study to test the applicability of a thermoluminescent dosimetric system for performing in vivo entrance dose measurements in external photon beam radiotherapy. The measurements demonstrated the value of thermoluminescent dosimetry as a treatment verification method and its applicability as a part of a quality assurance program in radiotherapy. (c) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Objective: To assess the temperature variation in the cervical, middle and apical thirds of root external wall, caused by 980-nm diode laser irradiation with different parameters. Methods: The roots of 90 canines, had their canals instrumented and were randomly distributed into 3 groups (n = 30) according to the laser potency (1.5 W, 3.0 W and 5.0 W). Each group was subdivided into 3 (n = 10) according to the frequency (CM, 100 Hz and 1000 Hz), and each subgroup divided into 2 (n = S): dried canal or filled with distilled water. The maximum temperature values were collected by 3 thermocouples located at each third of the root external wall and recorded by digital thermometers. Results: The groups irradiated in the continuous mode (CM) presented the highest values (11.82 +/- 5.78), regardless of the canals were dry or not, which were statistically different (p < 0.01) from those obtained with 100 Hz (6.22 +/- 3.64) and 1000 Hz (6.00 +/- 3.36), which presented no statistical difference between them (p > 0.01). The groups irradiated with 5.0 W presented the greatest temperature variation (12.15 +/- 5.14), followed by 3.0 W (7.88 +/- 3.92) and 1.5 W (4.02 +/- 2.16), differing between them (p < 0.01). The cervical third of the root presented the highest temperature rises (9.68 +/- 5.80), followed by the middle (7.66 +/- 4.87) and apical (6.70 +/- 4.23), with statistical difference among them (p < 0.01). After 30 s from the end of irradiation, all the specimens presented temperature variation lower than 10 degrees C. Conclusions: Application of 980-nm diode laser in the root, at 1.5 W in all operating modes, and 3.0 W, in the pulsed mode, for 20 s, can safely be used in endodontic treatment, irrespective of the presence of humidity. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Uncertainties in damping estimates can significantly affect the dynamic response of a given flexible structure. A common practice in linear structural dynamics is to consider a linear viscous damping model as the major energy dissipation mechanism. However, it is well known that different forms of energy dissipation can affect the structure's dynamic response. The major goal of this paper is to address the effects of the turbulent frictional damping force, also known as drag force on the dynamic behavior of a typical flexible structure composed of a slender cantilever beam carrying a lumped-mass on the tip. First, the system's analytical equation is obtained and solved by employing a perturbation technique. The solution process considers variations of the drag force coefficient and its effects on the system's response. Then, experimental results are presented to demonstrate the effects of the nonlinear quadratic damping due to the turbulent frictional force on the system's dynamic response. In particular, the effects of the quadratic damping on the frequency-response and amplitude-response curves are investigated. Numerically simulated as well as experimental results indicate that variations on the drag force coefficient significantly alter the dynamics of the structure under investigation. Copyright (c) 2008 D. G. Silva and P. S. Varoto.
Resumo:
Objective: To study the effect of an 830-nm gallium-aluminum-arsenic (GaAlAs) diode laser at two different energy densities (5 and 15 J/cm(2)) on the epiphyseal cartilage of rats by evaluating bone length and the number of chondrocytes and thickness of each zone of the epiphyseal cartilage. Background Data: Few studies have been conducted on the effects of low-level laser therapy on the epiphyseal cartilage at different irradiation doses. Materials and Methods: A total of 30 male Wistar rats with 23 days of age and weighing 90 g on average were randomly divided into 3 groups: control group (CG, no stimulation), G5 group (energy density, 5 J/cm(2)), and G15 group (energy density, 15 J/cm(2)). Laser treatment sessions were administered every other day for a total of 10 sessions. The animals were killed 24 h after the last treatment session. Histological slides of the epiphyseal cartilage were stained with hematoxylin-eosin (HE), photographed with a Zeiss photomicroscope, and subjected to histometric and histological analyses. Statistical analysis was performed using one-way analysis of variance followed by Tukey's post hoc test. All statistical tests were performed at a significance level of 0.05. Results: Histological analysis and x-ray radiographs revealed an increase in thickness of the epiphyseal cartilage and in the number of chondrocytes in the G5 and G15 groups. Conclusion: The 830-nm GaAlAs diode laser, within the parameters used in this study, induced changes in the thickness of the epiphyseal cartilage and increased the number of chondrocytes, but this was not sufficient to induce changes in bone length.
Resumo:
Background: It has been speculated that the biostimulatory effect of Low Level Laser Therapy could cause undesirable enhancement of tumor growth in neoplastic diseases. The aim of the present study is to analyze the behavior of melanoma cells (B16F10) in vitro and the in vivo development of melanoma in mice after laser irradiation. Methods: We performed a controlled in vitro study on B16F10 melanoma cells to investigate cell viability and cell cycle changes by the Tripan Blue, MTT and cell quest histogram tests at 24, 48 and 72 h post irradiation. The in vivo mouse model (male Balb C, n = 21) of melanoma was used to analyze tumor volume and histological characteristics. Laser irradiation was performed three times (once a day for three consecutive days) with a 660 nm 50 mW CW laser, beam spot size 2 mm(2), irradiance 2.5 W/cm(2) and irradiation times of 60s (dose 150 J/cm(2)) and 420s (dose 1050 J/cm(2)) respectively. Results: There were no statistically significant differences between the in vitro groups, except for an increase in the hypodiploid melanoma cells (8.48 +/- 1.40% and 4.26 +/- 0.60%) at 72 h postirradiation. This cancer-protective effect was not reproduced in the in vivo experiment where outcome measures for the 150 J/cm(2) dose group were not significantly different from controls. For the 1050 J/cm(2) dose group, there were significant increases in tumor volume, blood vessels and cell abnormalities compared to the other groups. Conclusion: LLLT Irradiation should be avoided over melanomas as the combination of high irradiance (2.5 W/cm(2)) and high dose (1050 J/cm(2)) significantly increases melanoma tumor growth in vivo.
Resumo:
Objective: The aim of this study was to assess by atomic force microscopy (AFM) the effect of Er,Cr:YSGG laser application on the surface microtopography of radicular dentin. Background: Lasers have been used for various purposes in dentistry, where they are clinically effective when used in an appropriate manner. The Er, Cr: YSGG laser can be used for caries prevention when settings are below the ablation threshold. Materials and Methods: Four specimens of bovine dentin were irradiated using an Er, Cr:YSGG laser (lambda = 2.78 mu m), at a repetition rate of 20 Hz, with a 750-mu m-diameter sapphire tip and energy density of 2.8 J/cm(2) (12.5 mJ/pulse). After irradiation, surface topography was analyzed by AFM using a Si probe in tapping mode. Quantitative and qualitative information concerning the arithmetic average roughness (Ra) and power spectral density analyses were obtained from central, intermediate, and peripheral areas of laser pulses and compared with data from nonirradiated samples. Results: Dentin Ra for different areas were as follows: central, 261.26 (+/- 21.65) nm; intermediate, 83.48 (+/- 6.34) nm; peripheral, 45.8 (+/- 13.47) nm; and nonirradiated, 35.18 (+/- 2.9) nm. The central region of laser pulses presented higher ablation of intertubular dentin, with about 340-760 nm height, while intermediate, peripheral, and nonirradiated regions presented no difference in height of peritubular and interperitubular dentin. Conclusion: According to these results, we can assume that even when used at a low-energy density parameter, Er, Cr: YSGG laser can significantly alter the microtopography of radicular dentin, which is an important characteristic to be considered when laser is used for clinical applications.
Resumo:
Electron beam induced second harmonic generation (SHG) is studied in Er(3+) doped PbO-GeO(2) glasses containing silver nanoparticles with concentrations that are controlled by the heat-treatment of the samples. The SHG is observed at T = 4.2 K using a p-polarized laser beam at 1064 nm. Enhancement of the SHG is observed in the samples that are submitted to electron beam incidence. The highest value of the nonlinear susceptibility, 2.08 pm/V, is achieved for the sample heat-treated during 72 h and submitted to an electron beam current of 15 nA. The samples that were not exposed to the electron beam present a susceptibility of a parts per thousand 0.5 pm/V.
Resumo:
Radiotherapy following breast cancer conserving surgery decreases the risks of local recurrence. Because 85% of breast cancers relapse in or around the surgical bed there has been some debate on the need for irradiating the whole breast. Electron intraoperative radiotherapy (ELIOT) has been used as a viable alternative for conventional external radiotherapy (RT). While the former requires a single dose of 21 Gy in the tumoral bed, the latter requires 5-6 weeks of irradiation with a total dose of 50 Gy and a boost of 10 Gy that irradiates the surgical bed. Herein, we investigated whether any significant differences exist between the mammography findings obtained from patients submitted to one of the two techniques. Two groups of 30 patients each were included in this study. All patients had mammographies taken at 12 and 24 months after finishing treatment. The mammography findings evaluated were: cutaneous thickening (>2 mm), architectural distortion secondary to fibrosis, edema, calcifications (both benign and malignant), and fat necrosis. For all variables studied, there was no statistical difference between the two groups. This indicates that the mammography findings obtained in either 12- or 24-month follow-up periods after breast cancer conserving surgery are similar, regardless of which of the two radiotherapy techniques (ELIOT or RT) is employed as a treatment for breast cancer. (C) 2010 Published by Elsevier Ireland Ltd.
Resumo:
BACKGROUND: Previous publications have documented the damage caused to red blood cells (RBCs) irradiated with X-rays produced by a linear accelerator and with gamma rays derived from a Cs-137 source. The biologic effects on RBCs of gamma rays from a Co-60 source, however, have not been characterized. STUDY DESIGN AND METHODS: This study investigated the effect of 3000 and 4000 cGy on the in vitro properties of RBCs preserved with preservative solution and irradiated with a cobalt teletherapy unit. A thermal device equipped with a data acquisition system was used to maintain and monitor the blood temperature during irradiation. The device was rotated at 2 r.p.m. in the irradiation beam by means of an automated system. The spatial distribution of the absorbed dose over the irradiated volume was obtained with phantom and thermoluminescent dosimeters (TLDs). Levels of Hb, K+, and Cl- were assessed by spectrophotometric techniques over a period of 45 days. The change in the topology of the RBC membrane was investigated by flow cytometry. RESULTS: Irradiation caused significant changes in the extracellular levels of K+ and Hb and in the organizational structure of the phospholipid bilayer of the RBC membrane. Blood temperature ranged from 2 to 4 degrees C during irradiation. Rotation at 2 r.p.m. distributed the dose homogeneously (92%-104%) and did not damage the RBCs. CONCLUSIONS: The method used to store the blood bags during irradiation guaranteed that all damage caused to the cells was exclusively due to the action of radiation at the doses applied. It was demonstrated that prolonged storage of Co-60-irradiated RBCs results in loss of membrane phospholipids asymmetry, exposing phosphatidylserine (PS) on the cells` surface with a time and dose dependence, which can reduce the in vivo recovery of these cells. A time- and dose-dependence effect on the extracellular K+ and plasma-free Hb levels was also observed. The magnitude of all these effects, however, seems not to be clinically important and can support the storage of irradiated RBC units for at last 28 days.
Resumo:
Irradiation with heavy ions can produce several modifications in the chain structure of polymers. These modifications can be related to scissioning and cross-linking of chemical bonds. which depend on the ion fluence and the density of energy deposited in the material. Stacked thin film Makrofol-KG (R) samples were irradiated with 350 MeV Au(26+) ions and FTIR absorption spectroscopy was used to determine the bond changes in the samples. Data on the absorption bands as a function of the fluence indicated a higher probability for simple-bonds scissioning than for double-bonds scissioning and no dependence on the number of double bonds breaking with ion fluence. Since sample irradiation was done in a non-track-overlapping regime, a novel process for double bonds formation is suggested: the excitation of a site in the material by only one incident ion followed by a double bond formation during the de-excitation process. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
INTRODUÇÃO: quanto menor a dimensão do voxel, maior a nitidez da imagem de tomografia computadorizada Cone-Beam (TCCB), porém, maior a dose de radiação emitida. OBJETIVOS: avaliar e comparar a reprodutibilidade da mensuração da espessura das tábuas ósseas vestibular e lingual em imagens de TCCB, utilizando diferentes protocolos de aquisição de imagem com variação da dimensão do voxel. MÉTODOS: exames de TCCB foram tomados de 12 mandíbulas humanas secas, com dimensão do voxel de 0,2; 0,3 e 0,4mm, no aparelho i-CAT Cone-Beam 3-D Dental Imaging System. No software i-CAT Viewer, foi mensurada a espessura das tábuas ósseas vestibular e lingual, em um corte axial passando 12mm acima do forame mentoniano do lado direito. A reprodutibilidade intraexaminador foi avaliada por meio da aplicação do teste t pareado. Para a comparação interexaminadores, foi utilizado o teste t independente. Os resultados foram considerados com o nível de significância de 5%. RESULTADOS: observou-se uma excelente reprodutibilidade interexaminadores para os três protocolos avaliados. A reprodutibilidade intraexaminadores foi muito boa, com exceção de algumas regiões dos dentes anteriores, que mostraram diferenças estatisticamente significativas, independentemente da dimensão do voxel. CONCLUSÃO: a mensuração da espessura das tábuas ósseas vestibular e lingual em imagens de TCCB mostrou boa precisão para exames obtidos com voxel de 0,2; 0,3 ou 0,4mm. A reprodutibilidade das mensurações na região anterior da mandíbula foi mais crítica do que na região posterior.