9 resultados para Experimental procedure
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work reports on a distinct experimental procedure conceived to closely approach the question of development of crystallization in lead oxyfluoroborate glasses in the presence of an electric field. After proposing earlier that this phenomenon should involve occurrence of redox-type electrochemical reactions occurring at the electrodes. it was in fact recently shown that a direct contact of the glasses with both the cathode and anode revealed essential, provided that crystallization did not develop when ions migration to these electrodes became frustrated. The present study demonstrates that. even in Pt,Ag/Glass/YSZ:PbF(2)/Ag,Pt-type electrochemical cells subjected to electric field action, where YSZ:PbF(2) represents composite-like mixtures (formed by Y(2)O(3)-doped ZrO(2) and PbF(2)) placed between the glass and anode. crystallization was observable in given cases. In summary, supported by (micro)structural and electrical characterizations, clear evidence is provided here that, besides Pb(2+) reduction at the cathode, crystallization really involves simultaneous F(-) oxidation at the anode, completing thus the whole redox electrochemical reaction so far postulated. In these cases, F(-) migration to the anode was achievable following PbF(2) percolative-like paths through the YSZ:PbF(2) mixtures. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Ordered intermetallic phases of Pt with several transition metals have been prepared and their electrocatalytic properties studied. In light of these tests it is proposed that these catalysts could be used as electrodes in fuel cells, as they combine an excellent capacity to adsorb organic fuels at the Pt sites with low susceptibility to being poisoned by intermediates and reaction products at the transition-metal sites. An experimental procedure used to obtain the four intermetallic phases Pt-M (M = Mn, Pb, Sb and Sn) is described. The phases thus produced were characterized by X-ray diffraction, scanning electron microscopy with surface analysis by energy-dispersive X-ray spectrometry, scanning tunneling microscopy and X-ray photoelectron spectroscopy. The data thus obtained support the conclusion that the method described here is highly effective for the preparation of Pt-M phases featuring a range of structural and electronic modifications that will allow a useful relation to be established between their physicochemical properties and predicted electrocatalytic activity. (C) 2007 Elsevier Ltd. All rights reserved.
Resumo:
The synthesis and self-assembly of tetragonal phase-containing L1(0)-Fe(55)Pt(45) nanorods with high coercive field is described. The experimental procedure resulted in a tetragonal/cubic phase ratio close to 1:1 for the as-synthesized nanoparticles. Using different surfactant/solvent proportions in the process allowed control of particle morphology from nanospheres to nanowires. Monodisperse nanorods with lengths of 60 +/- 5 nm and diameters of 2-3 nm were self-assembled in a perpendicular oriented array onto a substrate surface using hexadecylamine as organic spacer. Magnetic alignment and properties assigned, respectively, to the shape anisotropy and the tetragonal phase suggest that the self-assembled materials are a strong candidate to solve the problem of random magnetic alignment observed in FePt nanospheres leading to applications in ultrahigh magnetic recording (UHMR) systems capable of achieving a performance of the order of terabits/in(2).
Resumo:
Aim To study osseointegration and bone-level changes at implants installed using either a standard or a reduced diameter bur for implant bed preparation. Material and methods In six Labrador dogs, the first and second premolars were extracted bilaterally. Subsequently, mesial roots of the first molars were endodontically treated and distal roots, including the corresponding part of the crown, were extracted. After 3 months of healing, flaps were elevated and recipient sites were prepared in all experimental sites. The control site was prepared using a standard procedure, while the test site was prepared using a drill with a 0.2 mm reduced diameter than the standard one used in the contra-lateral side. After 4 months of healing, the animals were euthanized and biopsies were obtained for histological processing and evaluation. Results With the exception of one implant that was lost, all implants were integrated in mineralized bone. The alveolar crest underwent resorption at control as well as at test sites (buccal aspect similar to 1 mm). The most coronal contact of bone-to-implant was located between 1.2 and 1.6 mm at the test and between 1.3 and 1.7 mm at the control sites. Bone-to-implant contact percentage was between 49% and 67%. No statistically significant differences were found for any of the outcome variables. Conclusions After 4 months of healing, lateral pressure to the implant bed as reflected by higher insertion torques (36 vs. 15 N cm in the premolar and 19 vs. 7 N cm in the molar regions) did not affect the bone-to-implant contact. To cite this article:Pantani F, Botticelli D, Garcia IR Jr., Salata LA, Borges GJ, Lang NP. Influence of lateral pressure to the implant bed on osseointegration: an experimental study in dogs.Clin. Oral Impl. Res. 21, 2010; 1264-1270.doi: 10.1111/j.1600-0501.2009.01941.x.
Resumo:
Purpose: The aim of the present study was to investigate the healing, integration, and maintenance of autogenous onlay bone grafts and implant osseointegration either loaded in the early or the delayed stages. Materials and Methods: A total of 5 male clogs received bilateral blocks of onlay bone grafts harvested from the contralateral alveolar ridge of the mandible. On one side, the bone block was secured by 3 dental implants (3.5 mm x 13.0 mm, Osseospeed; Astra Tech AB, Molndal, Sweden). Two implants at the extremities of the graft were loaded 2 clays after installation by abutment connection and prosthesis (simultaneous implant placement group); the implant in the middle remained unloaded and served as the control. On the other side, the block was fixed with 2 fixation screws inserted in the extremities of the graft. Four weeks later, the fixation screws were replaced with 3 dental implants. The loading procedure (delayed implant placement group) was performed 2 clays later, as described for the simultaneous implant placement sites. The animals were sacrificed 12 weeks after the grafting procedure. Implant stability was measured through resonance frequency analysis. The bone volume and density were assessed on computed tomography. The bone to implant contact and bone area in a region of interest were evaluated on histologic slides. Results: The implant stability quotient showed statistical significance in favor of the delayed loaded grafts (P=.001). The bone-to-implant contact (P=.008) and bone area in a region of interest (P=0.005) were significantly greater in the delayed group. Nevertheless, no difference was found in terms of graft volume and density between the early loaded and delayed-loaded approaches. Conclusions: The protocol in which the implant and bone graft were given delayed loading allows for effective quality of implant osseointegration and stabilization, with healing and remodeling occurring in areas near the implant resulting in denser bone architecture. (C) 2010 American Association of Oral and Maxillofacial Surgeons J Oral Maxillofac Sing 68:825-832, 2010
Resumo:
This study investigated the effects of transporting animals from the experimental room to the animal facility in between experimental sessions, a procedure routinely employed in experimental research, on long-term social recognition memory. By using the intruder-resident paradigm, independent groups of Wistar rats exposed to a 2-h encounter with an adult intruder were transported from the experimental room to the animal facility either 0.5 or 6h after the encounter. The following day, residents were exposed to a second encounter with either the same or a different (unfamiliar) intruder. Resident`s social and non-social behaviors were carefully scored and subjected to Principal Component Analysis, thus allowing to parcel out variance and relatedness among these behaviors. Resident rats transported 6h after the first encounter exhibited reduced amount of social investigation towards familiar intruders, but an increase of social investigation when exposed to a different intruder as compared to the first encounter. These effects revealed a consistent long-lasting (24h) social recognition memory in rats. In contrast, resident rats transported 0.5 h after the first encounter did not exhibit social recognition memory. These results indicate that this common, little-noted, laboratory procedure disturbs long-term social recognition memory. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Purpose: The purpose of this study was to evaluate the bone healing kinetics around commercially pure titanium implants following inferior alveolar nerve (IAN) lateralization in a rabbit model. Materials and Methods: Inferior alveolar nerve lateralization was performed in 16 adult female rabbits (Oryctolagus cuniculus). During the nerve lateralization procedure, 1 implant was placed through the mandibular canal, and the IAN was replaced in direct contact with the implant. During the 8-week healing period, various bone labels were administered for fluorescent microscopy analysis. The animals were euthanized by anesthesia overdose, and the mandibular blocks were exposed by sharp dissection. Nondecalcified samples were prepared for optical light and scanning electron microscopy (SEM) evaluation. Results: SEM evaluation showed bone modeling/remodeling between the IAN and implant surface. Fluorochrome area fraction labeling at different times during the healing period showed that bone apposition mainly occurred during the first 2 weeks after implantation. Conclusions: The results obtained showed that bone healing/deposition occurred between the alveolar nerves in contact with a commercially pure titanium implant. No interaction between the nerve and the implant was detected after the 8-week healing period. Appositional bone healing occurred around the nerve bundle structure, restoring the mandibular canal integrity and morphology.
Resumo:
Conventional procedures employed in the modeling of viscoelastic properties of polymer rely on the determination of the polymer`s discrete relaxation spectrum from experimentally obtained data. In the past decades, several analytical regression techniques have been proposed to determine an explicit equation which describes the measured spectra. With a diverse approach, the procedure herein introduced constitutes a simulation-based computational optimization technique based on non-deterministic search method arisen from the field of evolutionary computation. Instead of comparing numerical results, this purpose of this paper is to highlight some Subtle differences between both strategies and focus on what properties of the exploited technique emerge as new possibilities for the field, In oder to illustrate this, essayed cases show how the employed technique can outperform conventional approaches in terms of fitting quality. Moreover, in some instances, it produces equivalent results With much fewer fitting parameters, which is convenient for computational simulation applications. I-lie problem formulation and the rationale of the highlighted method are herein discussed and constitute the main intended contribution. (C) 2009 Wiley Periodicals, Inc. J Appl Polym Sci 113: 122-135, 2009
Resumo:
This study describes the synthesis of novel biological hybrid materials, where 3D structures were obtained using gold nanoparticles (AuNps) and methionine (Met) in a one-step procedure in aqueous media. The type of nanostructure can be controlled by tuning the intermolecular interactions between Met and AuNp, which strongly depends on the pH used for the synthesis. Computational simulation using the density-functional theory (DFT) showed that the AuNp - Met 3D structures are formed upon reorientation of Met molecules so that the backbone amine groups interact via H-bonds. These findings were experimentally confirmed using FTIR and UV-vis spectroscopy. Crown Copyright (C) 2008 Published by Elsevier B. V. All rights reserved.