3 resultados para Expanded criteria
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The objective of this study was to evaluate the possible use of biometric testicular traits as selection criteria for young Nellore bulls using Bayesian inference to estimate heritability coefficients and genetic correlations. Multitrait analysis was performed including 17,211 records of scrotal circumference obtained during andrological assessment (SCAND) and 15,313 records of testicular volume and shape. In addition, 50,809 records of scrotal circumference at 18 mo (SC18), used as an anchor trait, were analyzed. The (co) variance components and breeding values were estimated by Gibbs sampling using the Gibbs2F90 program under an animal model that included contemporary groups as fixed effects, age of the animal as a linear covariate, and direct additive genetic effects as random effects. Heritabilities of 0.42, 0.43, 0.31, 0.20, 0.04, 0.16, 0.15, and 0.10 were obtained for SC18, SCAND, testicular volume, testicular shape, minor defects, major defects, total defects, and satisfactory andrological evaluation, respectively. The genetic correlations between SC18 and the other traits were 0.84 (SCAND), 0.75 (testicular shape), 0.44 (testicular volume), -0.23 (minor defects), -0.16 (major defects), -0.24 (total defects), and 0.56 (satisfactory andrological evaluation). Genetic correlations of 0.94 and 0.52 were obtained between SCAND and testicular volume and shape, respectively, and of 0.52 between testicular volume and testicular shape. In addition to favorable genetic parameter estimates, SC18 was found to be the most advantageous testicular trait due to its easy measurement before andrological assessment of the animals, even though the utilization of biometric testicular traits as selection criteria was also found to be possible. In conclusion, SC18 and biometric testicular traits can be adopted as a selection criterion to improve the fertility of young Nellore bulls.
Resumo:
To plan testing activities, testers face the challenge of determining a strategy, including a test coverage criterion that offers an acceptable compromise between the available resources and test goals. Known theoretical properties of coverage criteria do not always help and, thus, empirical data are needed. The results of an experimental evaluation of several coverage criteria for finite state machines (FSMs) are presented, namely, state and transition coverage; initialisation fault and transition fault coverage. The first two criteria focus on FSM structure, whereas the other two on potential faults in FSM implementations. The authors elaborate a comparison approach that includes random generation of FSM, construction of an adequate test suite and test minimisation for each criterion to ensure that tests are obtained in a uniform way. The last step uses an improved greedy algorithm.
Resumo:
Prediction of random effects is an important problem with expanding applications. In the simplest context, the problem corresponds to prediction of the latent value (the mean) of a realized cluster selected via two-stage sampling. Recently, Stanek and Singer [Predicting random effects from finite population clustered samples with response error. J. Amer. Statist. Assoc. 99, 119-130] developed best linear unbiased predictors (BLUP) under a finite population mixed model that outperform BLUPs from mixed models and superpopulation models. Their setup, however, does not allow for unequally sized clusters. To overcome this drawback, we consider an expanded finite population mixed model based on a larger set of random variables that span a higher dimensional space than those typically applied to such problems. We show that BLUPs for linear combinations of the realized cluster means derived under such a model have considerably smaller mean squared error (MSE) than those obtained from mixed models, superpopulation models, and finite population mixed models. We motivate our general approach by an example developed for two-stage cluster sampling and show that it faithfully captures the stochastic aspects of sampling in the problem. We also consider simulation studies to illustrate the increased accuracy of the BLUP obtained under the expanded finite population mixed model. (C) 2007 Elsevier B.V. All rights reserved.