2 resultados para Evolutionary relationship
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Changes in patterns and magnitudes of integration may influence the ability of a species to respond to selection. Consequently, modularity has often been linked to the concept of evolvability, but their relationship has rarely been tested empirically. One possible explanation is the lack of analytical tools to compare patterns and magnitudes of integration among diverse groups that explicitly relate these aspects to the quantitative genetics framework. We apply such framework here using the multivariate response to selection equation to simulate the evolutionary behavior of several mammalian orders in terms of their flexibility, evolvability and constraints in the skull. We interpreted these simulation results in light of the integration patterns and magnitudes of the same mammalian groups, described in a companion paper. We found that larger magnitudes of integration were associated with a blur of the modules in the skull and to larger portions of the total variation explained by size variation, which in turn can exert a strong evolutionary constraint, thus decreasing the evolutionary flexibility. Conversely, lower overall magnitudes of integration were associated with distinct modules in the skull, to smaller fraction of the total variation associated with size and, consequently, to weaker constraints and more evolutionary flexibility. Flexibility and constraints are, therefore, two sides of the same coin and we found them to be quite variable among mammals. Neither the overall magnitude of morphological integration, the modularity itself, nor its consequences in terms of constraints and flexibility, were associated with absolute size of the organisms, but were strongly associated with the proportion of the total variation in skull morphology captured by size. Therefore, the history of the mammalian skull is marked by a trade-off between modularity and evolvability. Our data provide evidence that, despite the stasis in integration patterns, the plasticity in the magnitude of integration in the skull had important consequences in terms of evolutionary flexibility of the mammalian lineages.
Resumo:
Spiders are considered conservative with regard to their resting metabolic rate, presenting the same allometric relation with body mass as the majority of land-arthropods. Nevertheless, web-building is thought to have a great impact on the energetic metabolism, and any modification that affects this complex behavior is expected to have an impact over the daily energetic budget. We analyzed the possibility of the presence of the cribellum having an effect on the allometric relation between resting metabolic rate and body mass for an ecribellate species (Zosis geniculata) and a cribellate one (Metazygia rogenhoferi), and employed a model selection approach to test if these species had the same allometric relationship as other land-arthropods. Our results show that M. rogenhoferi has a higher resting metabolic rate, while Z. geniculata fitted the allometric prediction for land arthropods. This indicates that the absence of the cribellum is associated with a higher resting metabolic rate, thus explaining the higher promptness to activity found for the ecribellate species. If our result proves to be a general rule among spiders, the radiation of Araneoidea could be connected to a more energy-consuming life style. Thus, we briefly outline an alternative model of diversification of Araneoidea that accounts for this possibility. (C) 2011 Elsevier Ltd. All rights reserved.