4 resultados para Evolutionary Information Behaviour
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
An organism is built through a series of contingent factors, yet it is determined by historical, physical, and developmental constraints. A constraint should not be understood as an absolute obstacle to evolution, as it may also generate new possibilities for evolutionary change. Modularity is, in this context, an important way of organizing biological information and has been recognized as a central concept in evolutionary biology bridging on developmental, genetics, morphological, biochemical, and physiological studies. In this article, we explore how modularity affects the evolution of a complex system in two mammalian lineages by analyzing correlation, variance/covariance, and residual matrices (without size variation). We use the multivariate response to selection equation to simulate the behavior of Eutheria and Metharia skulls in terms of their evolutionary flexibility and constraints. We relate these results to classical approaches based on morphological integration tests based on functional/developmental hypotheses. Eutherians (Neotropical primates) showed smaller magnitudes of integration compared with Metatheria (didelphids) and also skull modules more clearly delimited. Didelphids showed higher magnitudes of integration and their modularity is strongly influenced by within-groups size variation to a degree that evolutionary responses are basically aligned with size variation. Primates still have a good portion of the total variation based on size; however, their enhanced modularization allows a broader spectrum of responses, more similar to the selection gradients applied (enhanced flexibility). Without size variation, both groups become much more similar in terms of modularity patterns and magnitudes and, consequently, in their evolutionary flexibility. J. Exp. Zool. (Mol. Dev. Evol.) 314B:663-683, 2010. (C) 2010 Wiley-Liss, Inc.
Resumo:
In this study, using a combined data set of SSU rDNA and gGAPDH gene sequences, we provide phylogenetic evidence that supports Clustering of crocodilian trypanosomes from the Brazilian Caiman yacare (Alligatoridae) and Trypanosoma grayi, a species that Circulates between African crocodiles (Crocodilydae) and tsetse flies. In a survey of trypanosomes in Caiman yacare from the Brazilian Pantanal, the prevalence of trypanosome infection was 35% as determined by microhaematocrit and haemoculture, and 9 cultures were obtained. The morphology of trypomastigotes from caiman blood and tissue imprints was compared with those described for other crocodilian trypanosomes. Differences in morphology and growth behaviour of caiman trypanosomes were corroborated by molecular polymorphism that revealed 2 genotypes. Eight isolates were ascribed to genotype Cay01 and 1 to genotype Cay02. Phylogenetic inferences based on concatenated SSU rDNA and gGAPDII sequences showed that caiman isolates are closely related to T. grayi, constituting a well-supported monophyletic assemblage (clade T. grayi). Divergence time estimates based on clade composition, and biogeographical and geological events were used to discuss the relationships between the evolutionary histories of crocodilian trypanosomes and their hosts.
Resumo:
There is an increasing interest in the application of Evolutionary Algorithms (EAs) to induce classification rules. This hybrid approach can benefit areas where classical methods for rule induction have not been very successful. One example is the induction of classification rules in imbalanced domains. Imbalanced data occur when one or more classes heavily outnumber other classes. Frequently, classical machine learning (ML) classifiers are not able to learn in the presence of imbalanced data sets, inducing classification models that always predict the most numerous classes. In this work, we propose a novel hybrid approach to deal with this problem. We create several balanced data sets with all minority class cases and a random sample of majority class cases. These balanced data sets are fed to classical ML systems that produce rule sets. The rule sets are combined creating a pool of rules and an EA is used to build a classifier from this pool of rules. This hybrid approach has some advantages over undersampling, since it reduces the amount of discarded information, and some advantages over oversampling, since it avoids overfitting. The proposed approach was experimentally analysed and the experimental results show an improvement in the classification performance measured as the area under the receiver operating characteristics (ROC) curve.
Resumo:
Model trees are a particular case of decision trees employed to solve regression problems. They have the advantage of presenting an interpretable output, helping the end-user to get more confidence in the prediction and providing the basis for the end-user to have new insight about the data, confirming or rejecting hypotheses previously formed. Moreover, model trees present an acceptable level of predictive performance in comparison to most techniques used for solving regression problems. Since generating the optimal model tree is an NP-Complete problem, traditional model tree induction algorithms make use of a greedy top-down divide-and-conquer strategy, which may not converge to the global optimal solution. In this paper, we propose a novel algorithm based on the use of the evolutionary algorithms paradigm as an alternate heuristic to generate model trees in order to improve the convergence to globally near-optimal solutions. We call our new approach evolutionary model tree induction (E-Motion). We test its predictive performance using public UCI data sets, and we compare the results to traditional greedy regression/model trees induction algorithms, as well as to other evolutionary approaches. Results show that our method presents a good trade-off between predictive performance and model comprehensibility, which may be crucial in many machine learning applications. (C) 2010 Elsevier Inc. All rights reserved.