143 resultados para Equations of Mathematical Physics

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the existence of positive solutions of Hamiltonian-type systems of second-order elliptic PDE in the whole space. The systems depend on a small parameter and involve a potential having a global well structure. We use dual variational methods, a mountain-pass type approach and Fourier analysis to prove positive solutions exist for sufficiently small values of the parameter.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

A class of semilinear evolution equations of the second order in time of the form u(tt)+Au+mu Au(t)+Au(tt) = f(u) is considered, where -A is the Dirichlet Laplacian, 92 is a smooth bounded domain in R(N) and f is an element of C(1) (R, R). A local well posedness result is proved in the Banach spaces W(0)(1,p)(Omega)xW(0)(1,P)(Omega) when f satisfies appropriate critical growth conditions. In the Hilbert setting, if f satisfies all additional dissipativeness condition, the nonlinear Semigroup of global solutions is shown to possess a gradient-like attractor. Existence and regularity of the global attractor are also investigated following the unified semigroup approach, bootstrapping and the interpolation-extrapolation techniques.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Based on a divide and conquer approach, knowledge about nature has been organized into a set of interrelated facts, allowing a natural representation in terms of graphs: each `chunk` of knowledge corresponds to a node, while relationships between such chunks are expressed as edges. This organization becomes particularly clear in the case of mathematical theorems, with their intense cross-implications and relationships. We have derived a web of mathematical theorems from Wikipedia and, thanks to the powerful concept of entropy, identified its more central and frontier elements. Our results also suggest that the central nodes are the oldest theorems, while the frontier nodes are those recently added to the network. The network communities have also been identified, allowing further insights about the organization of this network, such as its highly modular structure.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Let omega be a factor state on the quasilocal algebra A of observables generated by a relativistic quantum field, which, in addition, satisfies certain regularity conditions [satisfied by ground states and the recently constructed thermal states of the P(phi)(2) theory]. We prove that there exist space- and time-translation invariant states, some of which are arbitrarily close to omega in the weak * topology, for which the time evolution is weakly asymptotically Abelian. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3372623]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We consider a model of classical noncommutative particle in an external electromagnetic field. For this model, we prove the existence of generalized gauge transformations. Classical dynamics in Hamiltonian and Lagrangian form is discussed; in particular, the motion in the constant magnetic field is studied in detail. (C) 2010 American Institute of Physics. [doi: 10.1063/1.3299296]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We investigate the quantum integrability of the Landau-Lifshitz (LL) model and solve the long-standing problem of finding the local quantum Hamiltonian for the arbitrary n-particle sector. The particular difficulty of the LL model quantization, which arises due to the ill-defined operator product, is dealt with by simultaneously regularizing the operator product and constructing the self-adjoint extensions of a very particular structure. The diagonalizibility difficulties of the Hamiltonian of the LL model, due to the highly singular nature of the quantum-mechanical Hamiltonian, are also resolved in our method for the arbitrary n-particle sector. We explicitly demonstrate the consistency of our construction with the quantum inverse scattering method due to Sklyanin [Lett. Math. Phys. 15, 357 (1988)] and give a prescription to systematically construct the general solution, which explains and generalizes the puzzling results of Sklyanin for the particular two-particle sector case. Moreover, we demonstrate the S-matrix factorization and show that it is a consequence of the discontinuity conditions on the functions involved in the construction of the self-adjoint extensions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In Bohmian mechanics, a version of quantum mechanics that ascribes world lines to electrons, we can meaningfully ask about an electron's instantaneous speed relative to a given inertial frame. Interestingly, according to the relativistic version of Bohmian mechanics using the Dirac equation, a massive particle's speed is less than or equal to the speed of light, but not necessarily less. That is, there are situations in which the particle actually reaches the speed of light-a very nonclassical behavior. That leads us to the question of whether such situations can be arranged experimentally. We prove a theorem, Theorem 5, implying that for generic initial wave functions the probability that the particle ever reaches the speed of light, even if at only one point in time, is zero. We conclude that the answer to the question is no. Since a trajectory reaches the speed of light whenever the quantum probability current (psi) over bar gamma(mu)psi is a lightlike 4-vector, our analysis concerns the current vector field of a generic wave function and may thus be of interest also independently of Bohmian mechanics. The fact that the current is never spacelike has been used to argue against the possibility of faster-than-light tunneling through a barrier, a somewhat similar question. Theorem 5, as well as a more general version provided by Theorem 6, are also interesting in their own right. They concern a certain property of a function psi : R(4) -> C(4) that is crucial to the question of reaching the speed of light, namely being transverse to a certain submanifold of C(4) along a given compact subset of space-time. While it follows from the known transversality theorem of differential topology that this property is generic among smooth functions psi : R(4) -> C(4), Theorem 5 asserts that it is also generic among smooth solutions of the Dirac equation. (C) 2010 American Institute of Physics. [doi:10.1063/1.3520529]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Prediction of carbohydrate fractions using equations from the Cornell Net Carbohydrate and Protein System (CNCPS) is a valuable tool to assess the nutritional value of forages. In this paper these carbohydrate fractions were predicted using data from three sunflower (Helianthus annuus L.) cultivars, fresh or as silage. The CNCPS equations for fractions B(2) and C include measurement of ash and protein-free neutral detergent fibre (NDF) as one of their components. However, NDF lacks pectin and other non-starch polysaccharides that are found in the cell wall (CW) matrix, so this work compared the use of a crude CW preparation instead of NDF in the CNCPS equations. There were no differences in the estimates of fractions B, and C when CW replaced NDF; however there were differences in fractions A and B2. Some of the CNCPS equations could be simplified when using CW instead of NDF Notably, lignin could be expressed as a proportion of DM, rather than on the basis of ash and protein-free NDF, when predicting CNCPS fraction C. The CNCPS fraction B(1) (starch + pectin) values were lower than pectin determined through wet chemistty. This finding, along with the results obtained by the substitution of CW for NDF in the CNCPS equations, suggests that pectin was not part of fraction B(1) but present in fraction A. We suggest that pectin and other non-starch polysaccharides that are dissolved by the neutral detergent solution be allocated to a specific fraction (B2) and that another fraction (B(3)) be adopted for the digestible cell wall carbohydrates.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of a classical limit describing the interacting particles in a second-quantized theory of identical particles with bosonic symmetry is proved. This limit exists in addition to the previously established classical limit with a classical field behavior, showing that the limit h -> 0 of the theory is not unique. An analogous result is valid for a free massive scalar field: two distinct classical limits are proved to exist, describing a system of particles or a classical field. The introduction of local operators in order to represent kinematical properties of interest is shown to break the permutation symmetry under some localizability conditions, allowing the study of individual particle properties.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We prove a Goldstone theorem in thermal relativistic quantum field theory, which relates spontaneous symmetry breaking to the rate of spacelike decay of the two-point function. The critical rate of fall-off coincides with that of the massless free scalar field theory. Related results and open problems are briefly discussed. (C) 2011 American Institute of Physics. [doi:10.1063/1.3526961]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We solve the operator ordering problem for the quantum continuous integrable su(1,1) Landau-Lifshitz model, and give a prescription to obtain the quantum trace identities, and the spectrum for the higher-order local charges. We also show that this method, based on operator regularization and renormalization, which guarantees quantum integrability, as well as the construction of self-adjoint extensions, can be used as an alternative to the discretization procedure, and unlike the latter, is based only on integrable representations. (C) 2010 American Institute of Physics. [doi:10.1063/1.3509374]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We study the free-fall of a quantum particle in the context of noncommutative quantum mechanics (NCQM). Assuming noncommutativity of the canonical type between the coordinates of a two-dimensional configuration space, we consider a neutral particle trapped in a gravitational well and exactly solve the energy eigenvalue problem. By resorting to experimental data from the GRANIT experiment, in which the first energy levels of freely falling quantum ultracold neutrons were determined, we impose an upper-bound on the noncommutativity parameter. We also investigate the time of flight of a quantum particle moving in a uniform gravitational field in NCQM. This is related to the weak equivalence principle. As we consider stationary, energy eigenstates, i.e., delocalized states, the time of flight must be measured by a quantum clock, suitably coupled to the particle. By considering the clock as a small perturbation, we solve the (stationary) scattering problem associated and show that the time of flight is equal to the classical result, when the measurement is made far from the turning point. This result is interpreted as an extension of the equivalence principle to the realm of NCQM. (C) 2010 American Institute of Physics. [doi:10.1063/1.3466812]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Consider a discrete locally finite subset Gamma of R(d) and the cornplete graph (Gamma, E), with vertices Gamma and edges E. We consider Gibbs measures on the set of sub-graphs with vertices Gamma and edges E` subset of E. The Gibbs interaction acts between open edges having a vertex in common. We study percolation properties of the Gibbs distribution of the graph ensemble. The main results concern percolation properties of the open edges in two cases: (a) when Gamma is sampled from a homogeneous Poisson process; and (b) for a fixed Gamma with sufficiently sparse points. (c) 2010 American Institute of Physics. [doi:10.1063/1.3514605]

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The existence of juxtaposed regions of distinct cultures in spite of the fact that people's beliefs have a tendency to become more similar to each other's as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size L and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L(2) whereas the size of the largest cluster grows with ln L(2). The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model-Axelrod's model-we found that these opinion domains are unstable to the effect of a thermal-like noise.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The mapping, exact or approximate, of a many-body problem onto an effective single-body problem is one of the most widely used conceptual and computational tools of physics. Here, we propose and investigate the inverse map of effective approximate single-particle equations onto the corresponding many-particle system. This approach allows us to understand which interacting system a given single-particle approximation is actually describing, and how far this is from the original physical many-body system. We illustrate the resulting reverse engineering process by means of the Kohn-Sham equations of density-functional theory. In this application, our procedure sheds light on the nonlocality of the density-potential mapping of density-functional theory, and on the self-interaction error inherent in approximate density functionals.