2 resultados para Enrico Fermi Atomic Power Plant.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We report on experimental studies of the Kondo physics and the development of non-Fermi-liquid scaling in UCu(4+x)Al(8-x) family. We studied 7 different compounds with compositions between x = 0 and 2. We measured electrical transport (down to 65 mK) and thermoelectric power (down to 1.8 K) as a function of temperature, hydrostatic pressure, and/or magnetic field. Compounds with Cu content below x = 1.25 exhibit long-range antiferromagnetic order at low temperatures. Magnetic order is suppressed with increasing Cu content and our data indicate a possible quantum critical point at x(cr) approximate to 1.15. For compounds with higher Cu content, non-Fermi-liquid behavior is observed. Non-Fermi-liquid scaling is inferred from electrical resistivity results for the x = 1.25 and 1.5 compounds. For compounds with even higher Cu content, a sharp kink occurs in the resistivity data at low temperatures, and this may be indicative of another quantum critical point that occurs at higher Cu compositions. For the magnetically ordered compounds, hydrostatic pressure is found to increase the Neel temperature, which can be understood in terms of the Kondo physics. For the non-magnetic compounds, application of a magnetic field promotes a tendency toward Fermi-liquid behavior. Thermoelectric power was analyzed using a two-band Lorentzian model, and the results indicate one fairly narrow band (10 meV and below) and a second broad band (around hundred meV). The results imply that there are two relevant energy scales that need to be considered for the physics in this family of compounds. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We observe experimentally a deviation of the radius of a Bose-Einstein condensate from the standard Thomas-Fermi prediction, after free expansion, as a function of temperature. A modified Hartree-Fock model is used to explain the observations, mainly based on the influence of the thermal cloud on the condensate cloud.