158 resultados para Engineering, Electronics and Electrical|Engineering, Industrial|Engineering, Mechanical
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The properties of recycled aggregate produced from mixed (masonry and concrete) construction and demolition (C&D) waste are highly variable, and this restricts the use of such aggregate in structural concrete production. The development of classification techniques capable of reducing this variability is instrumental for quality control purposes and the production of high quality C&D aggregate. This paper investigates how the classification of C&D mixed coarse aggregate according to porosity influences the mechanical performance of concrete. Concretes using a variety of C&D aggregate porosity classes and different water/cement ratios were produced and the mechanical properties measured. For concretes produced with constant volume fractions of water, cement, natural sand and coarse aggregate from recycled mixed C&D waste, the compressive strength and Young modulus are direct exponential functions of the aggregate porosity. Sink and float technique is a simple laboratory density separation tool that facilitates the separation of cement particles with lower porosity, a difficult task when done only by visual sorting. For this experiment, separation using a 2.2 kg/dmA(3) suspension produced recycled aggregate (porosity less than 17%) which yielded good performance in concrete production. Industrial gravity separators may lead to the production of high quality recycled aggregate from mixed C&D waste for structural concrete applications.
Resumo:
The influence of annealing on the mechanical properties of high-silicon cast iron for three alloys with distinct chromium levels was investigated. Each alloy was melted either with or without the addition of Ti and Mg. These changes in the chemical composition and heat treatment aimed to improve the material's mechanical properties by inhibiting the formation of large columnar crystals, netlike laminae, precipitation of coarse packs of graphite, changing the length and morphology of graphite, and rounding the extremities of the flakes to minimize the stress concentration. For alloys with 0.07 wt.% Cr, the annealing reduced the impact resistance and tensile strength due to an enhanced precipitation of refined carbides and the formation of interdendritic complex nets. Annealing the alloys containing Ti and Mg led to a decrease in the mechanical strength and an increase in the toughness. Alloys containing approximately 2 wt.% Cr achieved better mechanical properties as compared to the original alloy. However, with the addition of Ti and Mg to alloys containing 2% Cr, the chromium carbide formation was inhibited, impairing the mechanical properties. In the third alloy, with 3.5 wt.% of Cr additions, the mechanical strength improved. The annealing promoted a decrease in both hardness and amount of iron and silicon complex carbides. However, it led to a chromium carbide formation, which influenced the mechanical characteristics of the matrix of the studied material.
Resumo:
The development of Nb(3)Al and Nb(3)Sn superconductors is of great interest for the applied superconductivity area. These intermetallics composites are obtained normally by heat treatment reactions at high temperature. Processes that allow formation of the superconducting phases at lower temperatures (<1000 degrees C), particularly for Nb(3)Al, are of great interest. The present work studies phase formation and stability of Nb(3)Al and Nb(3)Sn superconducting phases using mechanical alloying (high energy ball milling). Our main objective was to form composites near stoichiometry, which could be transformed into the superconducting phases using low-temperature heat treatments. High purity Nb-Sn and Nb-Al powders were mixed to generate the required superconducting phases (Nb-25at.%Sn and Nb-25at.%Al) in an argon atmosphere glove-box. After milling in a Fritsch mill, the samples were compressed in a hydraulic uniaxial press and encapsulated in evacuated quartz tubes for heat treatment. The compressed and heat treated samples were characterized using X-ray diffractometry. Microstructure and chemical analysis were accomplished using scanning electron microscopy and energy dispersive spectrometry. Nb(3)Al XRD peaks were observed after the sintering at 800 degrees C for the sample milled for 30 h. Nb(3)Sn XRD peaks could be observed even before the heat treatment. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
Ce(0.8)SM(0.2)O(1.9) and CeO(2) nanomaterials were prepared by a solution technique to produce an ultrafine particulate material with high sinterability. In this work, the structural characteristics, the photoluminescent behavior and the ionic conductivity of the synthesized materials are focused. The thermally decomposed material consists of less than 10 nm in diameter nanoparticles. The Raman spectrum of pure CeO(2) consists of a single triple degenerate F(2g) model characteristic of the fluorite-like structure. The full width at half maximum of this band decreases linearly with increasing calcination temperature. The photoluminescence spectra show a broadened emission band assigned to the ligand-to-metal charge-transfer states O -> Ce(4+). The emission spectra of the Ce(0.8)Sm(0.2)O(1.9) specimens present narrow bands arising from the 4G(5/2) -> (6)H(J) transitions (J = 5/2, 7/2, 9/2 and 11/2) of Sm(3+) ion due to the efficient energy transfer from the O -> Ce(4+) transitions to the emitter 4G(5/2) level. The ionic conductivity of sintered specimens shows a significant dependence on density. (C) 2009 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study is to analyze the effect of neuromuscular electrical stimulation (NMES) on myoelectrical activity and on joint torque during isometric plantar flexion contraction. Ten healthy young adult subjects participate in this study. The electrodes for NMES are placed along posterior thigh along ciatic nerve trajectory. It is measured the myoelectrical activity and the isometric torque generated by ankle plantar flexion with an isokinetic dynamometer. The conditions of isometric contractions are maximum isometric voluntary contraction (MIVC), NMES, and association of both (MIVC+NMES). The results show lower torque during NMES and larger SOL activity compare to the others. Besides, in order to keep the same objective task (to produce the same level of torque), neuromuscular adaptations are necessary on the common drive.
Resumo:
In repair works of reinforced concrete, patch repairs tend to crack in the interfacial zone between the mortar and the old concrete. This occurs basically due to the high degree of restriction that acts on a patch repair. For this reason, the technology of patch repair needs to be the subject of a discussion involving professionals who work with projects, construction maintenance and mix proportioning of repair mortars. In the present work, a study is presented on the benefits that the ethylene vinyl acetate copolymer (EVA) and acrylate polymers can provide in the mix proportioning of a repair mortar with respect to compressive, tensile and direct-shear bond strength. The results indicated that the increase in bond strength and the reduction in the influence of the deficiency in Curing conditioning are the main contributions offered by the polymers studied here. (C) 2009 Elsevier, Ltd. All rights reserved.
Resumo:
In order to assess the influence of the colostrum period on pH and, electrical conductivity, we collected 418 milk samples from 127 Jersey cows. The samples were collected from healthy udders that did not present any bacterial growth in the microbiological examination. They were divided into eight groups as follows < 1/2 day; 1/2 and 1 degrees day; 2 degrees day; 3 degrees day; 4 degrees and 5 degrees day; 6 degrees and 7 degrees day; 8 degrees to 15 degrees day; 16 degrees to 30 degrees days of lactation. The samples were collected before milking and the following analyses were conducted: pH, electrical conductivity. In the first 24 hours of lactation, there was an reduction in electrical conductivity value, associated with an increase in pH value. We observed that transition of secretion from colostrum to milk, occurs during the first week of lactation; from 6(rd) day of lactation for pH value and 3(th) day for electrical conductivity value. We recommend the use the following figures as normal ranges for the first 24 hours of lactation (colostrum period): pH <= 6,51 and electrical conductivity <= 6,33 mS/cm; while for the interval between 2(nd) and 7(th) days of lactation (transition from colostrum to milk) we suggest the use of the values as normal ranges: pH <= 6,66 and electrical conductivity <= 5,93 mS/cm.
Resumo:
Bi(4-x)La(x)Ti(3)O(12) (BLT) ceramics were prepared and studied in this work in terms of La(3+)-modified microstructure and phase development as well as electrical response. According to the results processed from X-ray diffraction and electrical measurements, the solubility limit (XL) of La(3+) into the Bi(4)Ti(3)O(12) (BIT) matrix was here found to locate slightly above x = 1.5. Further, La(3+) had the effect of reducing the material grain size, while changing its morphology from the plate-like form, typical of BIT ceramics, to a spherical-like one. The electrical results presented and discussed here also include the behavior of the temperature of the ferroelectric-paraelectric phase transition as well as the normal or diffuse and/or relaxor nature of this transition depending on the La(3+) content. (c) 2008 Elsevier Ltd. All fights reserved.
Resumo:
This paper develops a Markovian jump model to describe the fault occurrence in a manipulator robot of three joints. This model includes the changes of operation points and the probability that a fault occurs in an actuator. After a fault, the robot works as a manipulator with free joints. Based on the developed model, a comparative study among three Markovian controllers, H(2), H(infinity), and mixed H(2)/H(infinity) is presented, applied in an actual manipulator robot subject to one and two consecutive faults.
Resumo:
Mechanical and tribological properties of a partially crystallized sintered glass-ceramic were compared to two commercial floor tiles: black granite and porcelainized stoneware. Mechanical properties, hardness and elastic modulus were evaluated by instrumented indentation. Friction coefficient and wear characterization were evaluated using a reciprocating ball-on-flat tribometer in two controlled environments: air with relative humidity of 53% and under running water at 23 degrees C. The sintered glass-ceramic and porcelainized stoneware presented similar mechanical and tribological properties. Regarding the mechanical and tribological properties, the results suggest that this glass-ceramic is suitable to be used as industrial tile. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
We describe the optical and electrical characterization of a poly(p-phenylenevinylene) derivative: poly(2-dodecanoylsulfanyl-p-phenylenevinylene) (12COS-PPV). The electrical characterization was carried out on devices with the FTO\PEDOT:PSS\12COS-PPV/Al structure. Positive charge carrier mobility mu(h) of similar to 1.0 x 10(-6) cm(2) V(-1) s(-1) and barrier height phi of similar to 0.1 eV for positive charge carrier injection at the PEDOT:PSS/12COS-PPV interface were obtained using a thermionic injection model. FTO\PEDOT:P55\12COS-PPV/Ca devices exhibited green-yellow electroluminescence with maximum emission at lambda = 540 nm.
Resumo:
Carrying out information about the microstructure and stress behaviour of ferromagnetic steels, magnetic Barkhausen noise (MBN) has been used as a basis for effective non-destructive testing methods, opening new areas in industrial applications. One of the factors that determines the quality and reliability of the MBN analysis is the way information is extracted from the signal. Commonly, simple scalar parameters are used to characterize the information content, such as amplitude maxima and signal root mean square. This paper presents a new approach based on the time-frequency analysis. The experimental test case relates the use of MBN signals to characterize hardness gradients in a AISI4140 steel. To that purpose different time-frequency (TFR) and time-scale (TSR) representations such as the spectrogram, the Wigner-Ville distribution, the Capongram, the ARgram obtained from an AutoRegressive model, the scalogram, and the Mellingram obtained from a Mellin transform are assessed. It is shown that, due to nonstationary characteristics of the MBN, TFRs can provide a rich and new panorama of these signals. Extraction techniques of some time-frequency parameters are used to allow a diagnostic process. Comparison with results obtained by the classical method highlights the improvement on the diagnosis provided by the method proposed.
Resumo:
The objective of this work is to present the finite element modeling of laminate composite plates with embedded piezoelectric patches or layers that are then connected to active-passive resonant shunt circuits, composed of resistance, inductance and voltage source. Applications to passive vibration control and active control authority enhancement are also presented and discussed. The finite element model is based on an equivalent single layer theory combined with a third-order shear deformation theory. A stress-voltage electromechanical model is considered for the piezoelectric materials fully coupled to the electrical circuits. To this end, the electrical circuit equations are also included in the variational formulation. Hence, conservation of charge and full electromechanical coupling are guaranteed. The formulation results in a coupled finite element model with mechanical (displacements) and electrical (charges at electrodes) degrees of freedom. For a Graphite-Epoxy (Carbon-Fibre Reinforced) laminate composite plate, a parametric analysis is performed to evaluate optimal locations along the plate plane (xy) and thickness (z) that maximize the effective modal electromechanical coupling coefficient. Then, the passive vibration control performance is evaluated for a network of optimally located shunted piezoelectric patches embedded in the plate, through the design of resistance and inductance values of each circuit, to reduce the vibration amplitude of the first four vibration modes. A vibration amplitude reduction of at least 10 dB for all vibration modes was observed. Then, an analysis of the control authority enhancement due to the resonant shunt circuit, when the piezoelectric patches are used as actuators, is performed. It is shown that the control authority can indeed be improved near a selected resonance even with multiple pairs of piezoelectric patches and active-passive circuits acting simultaneously. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
Multifunctional structures are pointed out as an important technology for the design of aircraft with volume, mass, and energy source limitations such as unmanned air vehicles (UAVs) and micro air vehicles (MAVs). In addition to its primary function of bearing aerodynamic loads, the wing/spar structure of an UAV or a MAV with embedded piezoceramics can provide an extra electrical energy source based on the concept of vibration energy harvesting to power small and wireless electronic components. Aeroelastic vibrations of a lifting surface can be converted into electricity using piezoelectric transduction. In this paper, frequency-domain piezoaeroelastic modeling and analysis of a canti-levered platelike wing with embedded piezoceramics is presented for energy harvesting. The electromechanical finite-element plate model is based on the thin-plate (Kirchhoff) assumptions while the unsteady aerodynamic model uses the doublet-lattice method. The electromechanical and aerodynamic models are combined to obtain the piezoaeroelastic equations, which are solved using a p-k scheme that accounts for the electromechanical coupling. The evolution of the aerodynamic damping and the frequency of each mode are obtained with changing airflow speed for a given electrical circuit. Expressions for piezoaeroelastically coupled frequency response functions (voltage, current, and electrical power as well the vibratory motion) are also defined by combining flow excitation with harmonic base excitation. Hence, piezoaeroelastic evolution can be investigated in frequency domain for different airflow speeds and electrical boundary conditions. [DOI:10.1115/1.4002785]
Resumo:
Sao Paulo Research Foundation (FAPESP) in Brazil