121 resultados para Endothelial cytoskeleton
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Immobilized Kidney 28-kDa Endostatin- Related (KES28kDa) Fragment Promotes Endothelial Cell Survival
Resumo:
Background/Objective: Renal ischemia-hypoxia is a leading cause of acute kidney injury (AKI). Ischemia causes extracellular matrix breakdown of the tubular basement membrane. Endostatin (ES) is the C-terminal fragment of collagen XVIII generated by proteolytic cleavage. Recent studies have demonstrated that ES expression is upregulated in ischemic kidneys. The present study aimed to characterize ES from ischemic kidneys. Methods: Ischemic renal failure was induced via 45 min of occlusion of the left renal artery and vein. After the ischemic period, blood was collected. Kidneys were harvested and used for immunohistochemical testing and protein extraction. Three-step purification was used. Soluble and immobilized purified ES were tested in cell viability and adhesion assays. Results: The soluble KES28kDa inhibited endothelial cell proliferation: 25 versus 12.5 mu g (p < 0.05); 12.5 versus 3.15 mu g (p < 0.05). Immobilization of KES28kDa supports endothelial cell survival over the control p = 0.021). Human umbilical vein endothelial cells plated on immobilized KES28kDa showed an increase in membrane ruffles and stress fibers. Conclusion: These data demonstrate the local synthesis of a 28-kDa ES-related fragment following AKI and suggest its role in endothelium survival. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
Objective. Given their involvement in pathological and physiological angiogenesis, there has been growing interest in understanding and manipulating endothellial progenitor cells (EPC) for therapeutic purposes. However, detailed molecular analysis of EPC before and during endothelial differentiation is lacking and is the subject of the present study. Materials and Methods. We report a detailed microarray gene-expression profile of freshly isolated (day 0) human cord blood (CB)-derived EPC (CD133(+)KDR(+) or CD34(+)KDR(+)), and at different time points during in vitro differentiation (early: day 13; late: day 27). Results. Data obtained reflect an EPC transcriptome enriched in genes related to stem/progenitor cells properties (chromatin remodeling, self-renewal, signaling, cytoskeleton organization and biogenesis, recruitment, and adhesion). Using a complementary DNA microarray enriched in intronic transcribed sequences, we observed, as well, that naturally transcribed intronic noncoding RNAs were specifically expressed at the EPC stage. Conclusion. Taken together, we have defined the global gene-expression profile of CB-derived EPC during the process of endothelial differentiation, which can be used to identify genes involved in different vascular pathologies. (C) 2008 ISEH - Society for Hematology and Stem Cells. Published by Elsevier Inc.
Resumo:
The endothelium plays a vital role in maintaining circulatory homeostasis by the release of relaxing and contracting factors. Any change in this balance may result in a process known as endothelial dysfunction that leads to impaired control of vascular tone and contributes to the pathogenesis of some cardiovascular and endocrine/metabolic diseases. Reduced endothelium-derived nitric oxide (NO) bioavailability and increased production of thromboxane A2, prostaglandin H2 and superoxide anion in conductance and resistance arteries are commonly associated with endothelial dysfunction in hypertensive, diabetic and obese animals, resulting in reduced endothelium-dependent vasodilatation and in increased vasoconstrictor responses. In addition, recent studies have demonstrated the role of enhanced overactivation ofβ-adrenergic receptors inducing vascular cytokine production and endothelial NO synthase (eNOS) uncoupling that seem to be the mechanisms underlying endothelial dysfunction in hypertension, heart failure and in endocrine-metabolic disorders. However, some adaptive mechanisms can occur in the initial stages of hypertension, such as increased NO production by eNOS. The present review focuses on the role of NO bioavailability, eNOS uncoupling, cyclooxygenase-derived products and pro-inflammatory factors on the endothelial dysfunction that occurs in hypertension, sympathetic hyperactivity, diabetes mellitus, and obesity. These are cardiovascular and endocrine-metabolic diseases of high incidence and mortality around the world, especially in developing countries and endothelial dysfunction contributes to triggering, maintenance and worsening of these pathological situations.
Resumo:
The actions of thyroid hormone (TH) on pancreatic beta cells have not been thoroughly explored, with current knowledge being limited to the modulation of insulin secretion in response to glucose, and beta cell viability by regulation of pro-mitotic and pro-apoptotic factors. Therefore, the effects of TH on proinsulin gene expression are not known. This led us to measure: a) proinsulin mRNA expression, b) proinsulin transcripts and eEF1A protein binding to the actin cytoskeleton, c) actin cytoskeleton arrangement, and d) proinsulin mRNA poly(A) tail length modulation in INS-1E cells cultured in different media containing: i) normal fetal bovine serum - FBS (control); ii) normal FBS plus 1 µM or 10 nM T3, for 12 h, and iii) FBS depleted of TH for 24 h (Tx). A decrease in proinsulin mRNA content and attachment to the cytoskeleton were observed in hypothyroid (Tx) beta cells. The amount of eEF1A protein anchored to the cytoskeleton was also reduced in hypothyroidism, and it is worth mentioning that eEF1A is essential to attach transcripts to the cytoskeleton, which might modulate their stability and rate of translation. Proinsulin poly(A) tail length and cytoskeleton arrangement remained unchanged in hypothyroidism. T3 treatment of control cells for 12 h did not induce any changes in the parameters studied. The data indicate that TH is important for proinsulin mRNA expression and translation, since its total amount and attachment to the cytoskeleton are decreased in hypothyroid beta cells, providing evidence that effects of TH on carbohydrate metabolism also include the control of proinsulin gene expression.
Resumo:
Background and Aims: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.
Resumo:
Background: The vascular endothelial growth factor (VEGF) is a major promoter of endothelial growth and migration. Some studies have shown a correlation between expression of this growth factor and prognosis in several cancers, including well-differentiated thyroid cancer. Aim: We studied VEGF expression, local invasiveness, and other prognostic factors in papillary thyroid carcinoma (PTC) to test the hypothesis that the expression of VEGF is correlated with the degree of invasion of PTC. Patients and Methods: Clinical and pathological data of 76 patients with PTC were retrospectively reviewed. Group 1 consisted of patients with gross locally invasive tumors, group 2 consisted of patients with only invasion of the thyroid capsule, and group 3 consisted of patients with noninvasive PTC. Results: VEGF expression was noted within the tumor in all groups of PTC patients but was absent in the surrounding normal tissue. Older patients had higher expression of VEGF than younger patients. The age of patients with strong reaction to VEGF was 46 +/- 14 (mean +/- standard deviation), and that in patients with a weaker reaction was 39 +/- 16 (p<0.05). Only 20% of patients with a follicular variant of PTC had a strong reaction to VEGF compared with 68% of patients with classical PTC (p<0.01). Conclusions: VEGF expression appears to be an early event in the development of PTC. Whether VEGF expression promotes the progression of PTC is not known, but the answer to this question may be important in view of its greater expression in older patients, a group whose prognosis in PTC is worse.
Resumo:
It has been demonstrated that human adipose tissue-derived mesenchymal stem cells (hASCs) enhance vascular density in ischemic tissues, suggesting that they can differentiate into vascular cells or release angiogenic factors that may stimulate neoangiogenesis. Moreover, there is evidence that shear stress (SS) may activate proliferation and differentiation of embryonic and endothelial precursor stem cells into endothelial cells (ECs). In this work, we investigated the effect of laminar SS in promoting differentiation of hASCs into ECs. SS (10 dyn/cm(2) up to 96 h), produced by a cone plate system, failed to induce EC markers (CD31, vWF, Flk-1) on hASC assayed by RT-PCR and flow cytometry. In contrast, there was a cumulative production of nitric oxide (determined by Griess Reaction) and vascular endothelial growth factor (VEGF; by ELISA) up to 96 h of SS stimulation ( NO(2)(-) in nmol/10(4) cells: static: 0.20 +/- 0.03; SS: 1.78 +/- 0.38, n = 6; VEGF in pg/10(4) cells: static: 191.31 +/- v35.29; SS: 372.80 +/- 46.74, n = 6, P < 0.05). Interestingly, the VEGF production was abrogated by 5 mM N(G)-L-nitro-arginine methyl ester (L-NAME) treatment (VEGF in pg/10(4) cells: SS: 378.80 +/- 46.74, n = 6; SS + L-NAME: 205.84 +/- 91.66, n = 4, P < 0.05). The results indicate that even though SS failed to induce EC surface markers in hASC under the tested conditions, it stimulated NO-dependent VEGF production.
Resumo:
Expansion of adipose tissue in obesity is associated with angiogenesis and adipose tissue mass depends on neovascularization. Vascular endothelial growth factor (VEGF) is the main angiogenic factor in the adipose tissue, and VEGF expression is tightly regulated at both transcriptional and translational levels. However, no previous study has tested the hypothesis that genetic polymorphisms in the VEGF gene could affect susceptibility to obesity. To test this hypothesis, we compared the distribution of genotypes and haplotypes including three VEGF genetic polymorphisms in obese children and adolescents with those found in healthy controls. We studied 172 healthy children and adolescents and 113 obese children and adolescents. Genotypes of three clinically relevant VEGF polymorphisms in the promoter region (C-2578A, G-1154A, and G-634C) of the VEGF gene were determined by TaqMan allele discrimination assay and real-time polymerase chain reaction. VEGF haplotypes were inferred using Haplo. stats and PHASE 2.1 programs. We found no differences in the distributions of VEGF genotypes and alleles (p > 0.05). However, the CAG haplotype was more frequent in the obese group than in the control group (4% versus 0%, respectively, in white subjects; p = 0.008; odds ratio 10.148 (95% confidence interval: 1.098-93.788). Our findings suggest that VEGF haplotypes affect susceptibility to obesity in children and adolescents.
Resumo:
The identification of genetic markers associated with chronic kidney disease (CKD) may help to predict its development. Because reduced nitric oxide (NO) bioavailability and endothelial dysfunction are involved in CKD, genetic polymorphisms in the gene encoding the enzyme involved in NO synthesis (endothelial NO synthase [eNos]) may affect the susceptibility to CKD and the development of end-stage renal disease (ESRD). We compared genotype and haplotype distributions of three relevant eNOS polymorphisms (T(-786) C in the promoter region, Glu298Asp in exon 7, and 4b/4a in intron 4) in 110 healthy control subjects and 127 ESRD patients. Genotypes for the T(-786) C and Glu298Asp polymorphisms were determined by TaqMan (R) Allele Discrimination assay and real-time polymerase chain reaction. Genotypes for the intron 4 polymorphism were determined by polymerase chain reaction and fragment separation by electrophoresis. The software program PHASE 2.1 was used to estimate the haplotypes frequencies. We considered significant a probability value of p < 0.05/number of haplotypes (p < 0.05/8 = 0.0063). We found no significant differences between groups with respect to age, ethnicity, and gender. CKD patients had higher blood pressure, total cholesterol, and creatinine levels than healthy control subjects (all p < 0.05). Genotype and allele distributions for the three eNOS polymorphisms were similar in both groups (p > 0.05). We found no significant differences in haplotype distribution between groups (p > 0.05). The lack of significant associations between eNOS polymorphisms and ESRD suggests that eNOS polymorphisms may not be relevant to the genetic component of CKD that leads to ESRD.
Resumo:
Left ventricular hypertrophy (LVH) is a complication that may result from chronic hypertension. While nitric oxide (NO) deficiency has been associated with LVH, inconsistent results have been reported with regards to the association of endothelial NO synthase (eNOS) polymorphisms and LVH in hypertensive patients. This study aims to assess whether eNOS haplotypes are associated with LVH in hypertensive patients. This study included 101 healthy controls and 173 hypertensive patients submitted to echocardiography examination. Genotypes for three eNOS polymorphisms were determined: a single-nucleotide polymorphism in the promoter region (T-786C) and in exon 7 (Glu298Asp), and variable number of tandem repeats in intron 4. We found no significant association between eNOS genotypes and hypertension or with LVH (all p>0.05). However, while we found two eNOS haplotypes associated with variable risk of hypertension (all p<0.05), we found no significant associations between eNOS haplotypes and LVH (all p>0.05), even after adjustment in multiple linear regression analysis. These findings suggest that eNOS haplotypes that have been associated with variable susceptibility to hypertension were not associated with LVH in hypertensive patients. Further studies are necessary to examine whether other genes downstream may interact with eNOS polymorphisms and predispose to LVH in hypertensive patients.
Resumo:
Vascular endothelial growth factor (VEGF) is a homodimeric glycoprotein produced mostly in endothelial cells and its transcription is regulated by a variety of growth factors and cytokines. VEGF plays many relevant roles, and three functional polymorphisms in the promoter region of the VEGF gene (C-2578A, G-1154A, and G-634C) have been associated with disease conditions. Although some studies suggest that interethnic differences exist in the distribution of these variants, no previous study has examined this hypothesis in admixed populations. We examined the distribution of these three clinically relevant VEGF single-nucleotide polymorphisms in 175 white and 185 black subjects. We have also estimated the haplotype distribution and assessed associations between these variants. Although the A-2578 and A-1154 variants were more common in whites (39% and 29%, respectively) than in blacks (29% and 16%, respectively; both p < 0.05), no significant interethnic differences were found with regards to the G-634C polymorphism. While the haplotype including the C-2578, G-1154, and G-634 variants was the most common in both ethnic groups, it was more common in blacks than in whites (p < 0.05). The haplotype including the C-2578, A-1154, and G-634 alleles and the haplotype including the C-2578, A-1154, and C-634 alleles were more common in whites than in blacks (both p < 0.05). These results show marked interethnic differences in the distribution of genetic variants of VEGF that may explain, at least in part, interethnic disparities in the susceptibility to cardiovascular diseases.
Resumo:
Interethnic disparities in the distribution of endothelial nitric oxide synthase (eNOS) polymorphisms may affect nitric oxide (NO)-mediated effects of and responses to drugs. While there are differences between black and white subjects there is no information regarding the distribution of eNOS gene alleles and haplotypes in Amerindians. We studied three clinically relevant eNOS polymorphisms (T(-786) C in the promoter, a variable number of tandem repeats in intron 4, and the Glu298Asp in exon 7) and eNOS haplotypes in 170 Amerindians from three tribes of the Brazilian Amazon. The results were compared with previous findings for black and white Brazilians. The Asp298, C(-786), and 4a alleles were much less common in Amerindians (5.0%, 3.2%, and 4.1%, respectively) than in blacks (15.1%, 19.5%, and 32.0%, respectively) or whites (32.8%, 41.9%, and 17.9%, respectively) (p<0.001). The haplotype including the most common alleles for each polymorphism was much more common in Amerindians (89%) than in blacks (45%) or whites (41%). Our findings are consistent with a lower genetic diversity in Amerindians compared with blacks and whites. These striking differences may be of major relevance for case-control association studies focusing on eNOS gene polymorphisms and may explain, at least in part, differences in the responses to cardiovascular drugs.
Resumo:
There is strong evidence implicating nitric oxide (NO) in the pathophysiology of migraine and aura. Therefore, genetic polymorphisms in the endothelial NO synthase (eNOS) gene have been studied as candidate markers for migraine susceptibility. We compared for the first time the distribution of eNOS haplotypes including the three clinically relevant eNOS polymorphisms (T(-786)C in the promoter, rs2070744; Glu298Asp in exon 7, rs1799983; and a 27 bp variable number of tandem repeats in intron 4) and two additional tagging single-nucleotide polymorphisms (rs3918226 and rs743506) in 178 women with migraine (134 without aura and 44 with aura) and 117 healthy controls (control group). Genotypes were determined by TaqMan allele discrimination assay, real-time polymerase chain reaction, and polymerase chain reaction followed by fragment separation by electrophoresis. The GA (rs743506) genotype was more common in the control group than in women with migraine (odds ratio = 0.47, 95% confidence interval [CI] 0.29-0.78, p<0.01). No significant differences were found in allele distributions for the five eNOS polymorphisms. However, the haplotypes including the variants ""C C a Glu G"" and the variants ""C C b Glu G"" were more common in women with migraine with aura than in women with migraine without aura (odds ratio = 30.71, 95% CI = 1.61-586.4 and odds ratio = 17.26, 95% CI = 1.94-153.4, respectively; both p<0.0015625). These findings suggest that these two eNOS haplotypes affect the susceptibility to the presence of aura in patients with migraine.
Resumo:
Vascular endothelial growth factor (VEGF) production is regulated by growth factors and inflammatory cytokines, and VEGF plays a role in migraine. We examined for the first time whether three functional polymorphisms in the promoter region of VEGF gene (C(-2578)A, G(-1154A), and G(-634C)) and VEGF haplotypes are associated with migraine. We studied 114 healthy women without migraine and 175 women with migraine (129 without aura, and 46 with aura). We found no differences in the distributions of VEGF genotypes and alleles (p > 0.05). However, the CAC haplotype was more frequent in controls than in migraine patients, and the AGC haplotype was more frequent in patients with migraine with aura than in controls (both p < 0.05). These findings suggest that VEGF haplotypes affect susceptibility to migraine.
Resumo:
The aim of the current study was to evaluate the expression of vascular endothelial growth factor (VEGF) and the microvascular density in canine soft-tissue sarcomas. Immunohistochemistry for VEGF expression was performed on 20 canine neoplasms by the streptavidin-biotin-peroxidase method using an anti-VEGF mouse monoclonal antibody (ab-119). The Volume fraction of microvessels in the sarcomas was quantified in hematoxylin and eosin-stained tissue sections. At least 10 fields of view (40x magnification) per neoplasm were analyzed by positioning a grid with 100 points and counting the microvessels that fell into the intersection points. This percentage was considered the volume fraction of these microvessels in the tumor section. VEGF expression was detected in 65% of the neoplasms. In 92.3% of the neoplasms, the expression occurred in the peritumor region; in 46.15%, in the intratumor region; and in 38.46%, the expression was present in both regions. The cells responsible for VEGF expression were fibroblasts and macrophages in the peritumor region or in the pseudocapsule and neoplastic cells in the intratumor region. Greater intratumoral VEGF was expressed in hemangiopericytomas (P = 0.04). No difference was present in the volume fraction of tumor microvessels between VEGF-positive and VEGF-negative neoplasms (P = 0.3416) or for the different types of neoplasms (P = 0.5). The results of this study suggest that VEGF participates in the angiogenesis of soft-tissue sat-coma in dogs. Additional research will be necessary to elucidate the contribution of VEGF to the progression of malignancy.