20 resultados para Electrophoretic depositions
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The present paper describes the immobilization of nanoparticles onto conducting substrates by using both electrostatic layer-by-layer and electrophoretic deposition (EPD) methods. These two techniques were compared in high-performance electrochromic electrodes based on mixed nickel hydroxide nanoparticles. In addition to easy handling, EPD seems to be the most suitable method for the immobilization of nanoparticles, leading to higher electrochromic efficiencies, lower response times and higher stability upon coloration and bleaching cycling. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Ba0.77Ca0.23TiO3 (BCT23) nanometric powders, synthesized by the modified Pechini method, were used as precursor to produce thick films (50-130 mu m) employing the electrophoretic deposition (EPD) technique. The BCT23 powder presented a single crystalline phase with an average particle size and a crystallite size of similar to 60 nm and similar to 20 nm, respectively, when calcined at 800 degrees C/2h. BCT23 thick films were deposited on platinum substrates starting from different suspensions prepared by dispersion of the powder into: isopropyl alcohol (IPA) or a mixture of acetylacetone (Acac) and ethanol (EtOH) (1:1, volumetric ratio). A milling process was used to deagglomerate the powders in order to increase the suspension stability and improving the deposition. Dense and crack free thick films with uniform microstructure were obtained after sintering at 1300 degrees C/2 h from Acac+EtOH solution. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Compared to other volatile carbonylic compounds present in outdoor air, formaldehyde (CH2O) is the most toxic, deserving more attention in terms of indoor and outdoor air quality legislation and control. The analytical determination of CH2O in air still presents challenges due to the low-level concentration (in the sub-ppb range) and its variation with sampling site and time. Of the many available analytical methods for carbonylic compounds, the most widespread one is the time consuming collection in cartridges impregnated with 2,4-dinitrophenylhydrazine followed by the analysis of the formed hydrazones by HPLC. The present work proposes the use of polypropylene hollow porous capillary fibers to achieve efficient CH2O collection. The Oxyphan (R) fiber (designed for blood oxygenation) was chosen for this purpose because it presents good mechanical resistance, high density of very fine pores and high ratio of collection area to volume of the acceptor fluid in the tube, all favorable for the development of air sampling apparatus. The collector device consists of a Teflon pipe inside of which a bundle of polypropylene microporous capillary membranes was introduced. While the acceptor passes at a low flow rate through the capillaries, the sampled air circulates around the fibers, impelled by a low flow membrane pump (of the type used for aquariums ventilation). The coupling of this sampling technique with the selective and quantitative determination of CH2O, in the form of hydroxymethanesulfonate (HMS) after derivatization with HSO3-, by capillary electrophoresis with capacitively coupled contactless conductivity detection (CE-(CD)-D-4) enabled the development of a complete analytical protocol for the CH2O evaluation in air. (C) 2008 Published by Elsevier B.V.
Resumo:
In mammals, the production of melatonin by the pineal gland is mainly controlled by the suprachiasmatic nuclei (SCN), the master clock of the circadian system. We have previously shown that agents involved in inflammatory responses, such as cytokines and corticosterone, modulate pineal melatonin synthesis. The nuclear transcription factor NFKB, detected by our group in the rat pineal gland, modulates this effect. Here, we evaluated a putative constitutive role for the pineal gland NFKB pathway. Male rats were kept under 12 h: 12 h light-dark (LD) cycle or under constant darkness (DD) condition. Nuclear NFKB was quantified by electrophoretic mobility shift assay on pineal glands obtained from animals killed throughout the day at different times. Nuclear content of NFKB presented a daily rhythm only in LD-entrained animals. During the light phase, the amount of NFKB increased continuously, and a sharp drop occurred when lights were turned off. Animals maintained in a constant light environment until ZT 18 showed diurnal levels of nuclear NFKB at ZT15 and ZT18. Propranolol (20 mg/kg, i.p., ZT 11) treatment, which inhibits nocturnal sympathetic input, impaired nocturnal decrease of NFKB only at ZT18. A similar effect was observed in free-running animals, which secreted less nocturnal melatonin. Because melatonin reduces constitutive NFKB activation in cultured pineal glands, we propose that this indolamine regulates this transcription factor pathway in the rat pineal gland, but not at the LD transition. The controversial results regarding the inhibition of pineal function by constant light or blocking sympathetic neurotransmission are discussed according to the hypothesis that the prompt effect of lights-off is not mediated by noradrenaline, which otherwise contributes to maintaining low levels of nuclear NFKB at night. In summary, we report here a novel transcription factor in the pineal gland, which exhibits a constitutive rhythm dependent on environmental photic information. (Author correspondence: rpmarkus@usp.br)
Resumo:
Although the anti-inflammatory actions of glucocorticoids (GCs) are well established, evidence has accumulated showing that proinflammatory GC effects can occur in the brain, in a poorly understood manner. Using electrophoretic mobility shift assay, real-time PCR, and immunoblotting, we investigated the ability of varying concentrations of corticosterone (CORT, the GC of rats) to modulate lipopolysaccharide (LPS)-induced activation of NF-kappa B (nuclear factor kappa B), expression of anti- and proinflammatory factors and of the MAP (mitogen-activated protein) kinase family [ERK (extracellular signal-regulated kinase), p38, and JNK/ SAPK (c-Jun N-terminal protein kinase/ stress-activated protein kinase)], and AKT. In the frontal cortex, elevated CORT levels were proinflammatory, exacerbating LPS effects on NF-kappa B, MAP kinases, and proinflammatory gene expression. Milder proinflammatory GCs effects occurred in the hippocampus. In the absence of LPS, elevated CORT levels increased basal activation of ERK1/ 2, p38, SAPK/ JNK, and AKT in both regions. These findings suggest that GCs do not uniformly suppress neuroinflammation and can even enhance it at multiple levels in the pathway linking LPS exposure to inflammation.
Resumo:
The aim of the present study was to evaluate the effect of overstimulation of beta-adrenoceptors on vascular inflammatory mediators. Wistar rats were treated with the beta-adrenoceptor agonist isoproterenol (0.3 mg(.)kg(-1.)day(-1) sc) or vehicle (control) for 7 days. At the end of treatment, the right carotid artery was catheterized for arterial and left ventricular (LV) hemodynamic evaluation. Isoproterenol treatment increased LV weight but did not change hemodynamic parameters. Aortic mRNA and protein expression were quantified by real-time RT-PCR and Western blot analysis, respectively. Isoproterenol enhanced aortic mRNA and protein expression of IL-1 beta (124% and 125%) and IL-6 (231% and 40%) compared with controls but did not change TNF-alpha expression. The nuclear-to-cytoplasmatic protein expression ration of the NF-beta B p65 subunit was increased by isoproterenol treatment (51%); in addition, it reduced the cytoplasmatic expression of I kappa B-alpha (52%) in aortas. An electrophoretic mobility shift assay was performed using the aorta, and increased NF-kappa B DNA binding (31%) was observed in isoproterenol-treated rats compared with controls (P < 0.05). Isoproterenol treatment increased phenylephrine-induced contraction in aortic rigs (P < 0.05), which was significantly reduced by superoxide dismutase (150 U/ml) and sodium salicylate (5 mM). Cotreatment with thalidomide (150 mg(.)kg(-1.)day(-1) for 7 days) also reduced hyperreactivity to phenylephrine induced by isoproterenol. In conclusion, overstimulation of beta-adrenoceptors increased proinflammatory cytokines and upregulated NF-kappa B in the rat aorta. Moreover, local oxidative stress and the proinflammatory state seem to play key roles in the altered vascular reactivity of the rat aorta induced by chronic beta-adrenergic stimulation.
Resumo:
The bacterial GatCAB operon for tRNA-dependent amidotransferase (AdT) catalyzes the transamidation of mischarged glutamyl-tRNA(Gln) to glutaminyl-tRNA(Gln). Here we describe the phenotype of temperature-sensitive (ts) mutants of GTF1, a gene proposed to code for subunit F of mitochondrial AdT in Saccharomyces cerevisiae. The ts gtf1 mutants accumulate an electrophoretic variant of the mitochondrially encoded Cox2p subunit of cytochrome oxidase and an unstable form of the Atp8p subunit of the F(1)-F(0) ATP synthase that is degraded, thereby preventing assembly of the F(0) sector. Allotopic expression of recoded ATP8 and COX2 did not significantly improve growth of gtf1 mutants on respiratory substrates. However, ts gft1 mutants are partially rescued by overexpression of PET112 and HER2 that code for the yeast homologues of the catalytic subunits of bacterial AdT. Additionally, B66, a her2 point mutant has a phenotype similar to that of gtf1 mutants. These results provide genetic support for the essentiality, in vivo, of the GatF subunit of the heterotrimeric AdT that catalyzes formation of glutaminyl-tRNA(Gln) (Frechin, M., Senger, B., Braye, M., Kern, D., Martin, R. P., and Becker, H. D. (2009) Genes Dev. 23, 1119-1130).
Resumo:
In most bacteria, the ferric uptake regulator (Fur) is a global regulator that controls iron homeostasis and other cellular processes, such as oxidative stress defense. In this work, we apply a combination of bioinformatics, in vitro and in vivo assays to identify the Caulobacter crescentus Fur regulon. A C. crescentus fur deletion mutant showed a slow growth phenotype, and was hypersensitive to H(2)O(2) and organic peroxide. Using a position weight matrix approach, several predicted Fur-binding sites were detected in the genome of C. crescentus, located in regulatory regions of genes not only involved in iron uptake and usage but also in other functions. Selected Fur-binding sites were validated using electrophoretic mobility shift assay and DNAse I footprinting analysis. Gene expression assays revealed that genes involved in iron uptake were repressed by iron-Fur and induced under conditions of iron limitation, whereas genes encoding iron-using proteins were activated by Fur under conditions of iron sufficiency. Furthermore, several genes that are regulated via small RNAs in other bacteria were found to be directly regulated by Fur in C. crescentus. In conclusion, Fur functions as an activator and as a repressor, integrating iron metabolism and oxidative stress response in C. crescentus.
Resumo:
Dispersions of saturated anionic phospholipid dimyristoyl phosphatidylglycerol (DMPG) have been extensively studied regarding their peculiar thermostructural behavior. At low ionic strength, the gel-fluid transition is spread along nearly 17 degrees C, displaying several thermal events in the calorimetric profile that is quite different from the single sharp peak around 23 degrees C found for higher ionic strength DMPG dispersions. To investigate the role of charge in the bilayer transition, we carefully examine the temperature dependence of the electrical conductivity of DMPG dispersions at different concentrations, correlating the data with the corresponding differential scanning calorimetry (DSC) traces. Electrical conductivity together with electrophoretic mobility measurements allowed the calculation of the dependence of the degree of ionization of DMPG vesicles on lipid concentration and temperature. It was shown that there is a decrease in vesicle charge as the lipid concentration increases, which is probably correlated with the increase in the concentration of bulk Na(+). Apart from the known increase in the electrical conductivity along the DMPG temperature transition region, a sharp rise was observed at the bilayer pretransition for all lipid concentrations studied, possibly indicating that the beginning of the chain melting process is associated with an increase in bilayer ionization. It is confirmed here that the gel-fluid transition of DMPG at low ionic strength is accompanied by a huge increase in the dispersion viscosity. However, it is shown that this measured macroviscosity is distinct from the local viscosity felt by either charged ions or DMPG charged aggregates in measurements of electrical conductivity or electrophoretic mobility, Data presented here give support to the idea that DMPG vesicles, at low ionic strength, get more ionized along the temperature transition region and could be perforated and/or deformed vesicle structures.
Resumo:
Xylella fastidiosa is the etiologic agent of a wide range of plant diseases, including citrus variegated chlorosis (CVC), a major threat to citrus industry. The genomes of several strains of this phytopathogen were completely sequenced, enabling large-scale functional studies. DNA microarrays representing 2,608 (91.6%) coding sequences (CDS) of X. fastidiosa CVC strain 9a5c were used to investigate transcript levels during growth with different iron availabilities. When treated with the iron chelator 2,2`-dipyridyl, 193 CDS were considered up-regulated and 216 were considered down-regulated. Upon incubation with 100 mu M ferric pyrophosphate, 218 and 256 CDS were considered up- and down-regulated, respectively. Differential expression for a subset of 44 CDS was further evaluated by reverse transcription-quantitative PCR. Several CDS involved with regulatory functions, pathogenicity, and cell structure were modulated under both conditions assayed, suggesting that major changes in cell architecture and metabolism occur when X. fastidiosa cells are exposed to extreme variations in iron concentration. Interestingly, the modulated CDS include those related to colicin V-like bacteriocin synthesis and secretion and to functions of pili/fimbriae. We also investigated the contribution of the ferric uptake regulator Fur to the iron stimulon of X. fastidiosa. The promoter regions of the strain 9a5c genome were screened for putative Fur boxes, and candidates were analyzed by electrophoretic mobility shift assays. Taken together, our data support the hypothesis that Fur is not solely responsible for the modulation of the iron stimulon of X fastidiosa, and they present novel evidence for iron regulation of pathogenicity determinants.
Geranylation of benzoic acid derivatives by enzymatic extracts from Piper crassinervium (Piperaceae)
Resumo:
The ability to carry out geranylations on aromatic substrates using enzymatic extracts from the leaves of Piper crassinervium (Piperaceae) was evaluated. A literature analysis pointed out its importance as a source of prenylated bioactive molecules. The screening performed on aromatic acceptors (benzoic acids, phenols and phenylpropanoids) including geranyl diphosphate as prenyl donor, showed the biotransformation of the 3,4-dihydroxybenzoic acid by the crude extract, and the p-hydroxybenzoic acid by both the microsomal fraction and the crude extract, after treating leaves with glucose. The analysis of the products allowed the identification of C- and O-geranylated derivatives, and the protease (subtilisin and pepsin) inhibition performed on the O-geranylated compounds showed weak inhibition. Electrophoretic profiles indicated the presence of bands/spots among 56-58 kDa and pI 6-7, which are compatible with prenyltransferases. These findings show that P. crassinervium could be considered as a source of extracts with geranyltransferase activity to perform biotransformations on aromatic substrates. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
The present work describes the synthesis of platinum nanoparticles followed by their electrophoretic deposition onto transparent fluorine-doped tin oxide electrodes. The nano-Pt-modified electrodes were characterized by voltammetric studies in acidic solutions showing a great electrocatalytic behavior towards H(+) reduction being very interesting for fuel cell applications. Morphological characterization was performed by atomic force microscopy on different modified electrodes showing a very rough surface which can be tuned by means of time of deposition. Also, nickel hydroxide thin films were galvanostatically grown onto these electrodes showing an interesting electrochemical behavior as sharper peaks, indicating a faster ionic exchange from the electrolyte to the film.
Resumo:
A method for the simultaneous determination of the stilbene resveratrol, four phenolic acids (syringic, coumaric, caffeic, and gallic acids), and five flavonoids (catechin, rutin, kaempferol, myricetin, and quercetin) in wine by CE was developed and validated. The CE electrolyte composition and instrumental conditions were optimized using 2(7-3) factorial design and response surface analysis, showing sodium tetraborate, MeOH, and their interaction as the most influential variables. The optimal electrophoretic conditions, minimizing the chromatographic resolution statistic values, consisted of 17 mmol/L sodium tetraborate with 20% methanol as electrolyte, constant voltage of 25 kV, hydrodynamic injection at 50 mbar for 3 s, and temperature of 25 degrees C. The R(2) values for linearity varied from 0.994 to 0.999; LOD and LOQ were 0.1 to 0.3 mg/L and 0.4 to 0.8 mg/L, respectively. The RSDs for migration time and peak area obtained from ten consecutive injections were less than 2% and recoveries varied from 97 to 102%. The method was applied to 23 samples of inexpensive Brazilian wines, showing wide compositional variation.
Resumo:
The proposed method for the identification of adulteration was based on the controlled acid hydrolysis of xylan and starch present in some vegetable adulterants, followed by the analysis of the resulting xylose and glucose, which are the monosaccharides that compose, respectively, the two polysaccharides. The acid hydrolysis with HCl increases the ionic strength of the sample, which impairs the electrophoretic separation. Thus, a neutralization step based on anion exchange resin was necessary. The best separations were obtained in NaOH 80 mmol/L, CTAB 0.5 mmol/L, and methanol 30% v/v. Because of the high value of pH, monosaccharides are separated as anionic species in such running electrolyte. The LOQ for both monosaccharides was 0.2 g for 100 g of dry matter, which conforms to the tolerable limits.
Resumo:
Highly stable and crystalline V(2)O(5) nanoparticles with an average diameter of 15 nm have been easily prepared by thermal treatment of a bariandite-like vanadium oxide, V(10)O(24)center dot 9H(2)O. Their characterization was carried out by powder X-ray diffractometry (XRD). Fourier transform infrared (FT-IR) and Raman spectroscopies, and transmission electron microscopy (TEM). The fibrous and nanostructured film obtained by electrophoretic deposition of the V(2)O(5) nanoparticles showed good electroactivity when submitted to cyclic voltammetry in an ionic liquid-based electrolyte. The use of this film for the preparation of a nanostructured electrode led to an improvement of about 50% in discharge capacity values when compared with similar electrodes obtained by casting of a V(2)O(5) xerogel. (C) 2009 Elsevier Inc. All rights reserved.