1 resultado para Electronic control.

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we use Nuclear Magnetic Resonance (NMR) to write electronic states of a ferromagnetic system into high-temperature paramagnetic nuclear spins. Through the control of phase and duration of radio frequency pulses, we set the NMR density matrix populations, and apply the technique of quantum state tomography to experimentally obtain the matrix elements of the system, from which we calculate the temperature dependence of magnetization for different magnetic fields. The effects of the variation of temperature and magnetic field over the populations can be mapped in the angles of spin rotations, carried out by the RF pulses. The experimental results are compared to the Brillouin functions of ferromagnetic ordered systems in the mean field approximation for two cases: the mean field is given by (i) B = B(0) + lambda M and (ii) B = B(0) + lambda M + lambda`M(3), where B(0) is the external magnetic field, and lambda, lambda` are mean field parameters. The first case exhibits second order transition, whereas the second case has first order transition with temperature hysteresis. The NMR simulations are in good agreement with the magnetic predictions.