3 resultados para Electric load distribution
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the first part some information and characterisation about an AC distribution network that feeds traction substations and their possible influences on the DC traction load flow are presented. Those influences are investigated and mathematically modelled. To corroborate the mathematical model, an example is presented and their results are confronted with real measurements.
Resumo:
The objective of this study was to evaluate the stress distribution in the resin in contact with the spirals of cylindrical and conical mini-implants, when submitted to lateral load and insertion torsion. A photoelastic model was fabricated using transparent gelatin to simulate the alveolar bone. The model was observed with a plane polariscope and photographically recorded before and after activation of the two screws with a lateral force and torsion. The lateral force application caused bending moments on both mini-implants, with the uprising of fringes or isochromatics, characteristics of stresses, along the threads of the mini-implants and in the apex. When the torsion was exerted in the mini-implants, a great concentration of stress upraised close to the apex. The conclusion was that, comparing conical with cylindrical mini-implants under lateral load, the stresses were similar on the traction sides. The differences appear (1) on the apex, where the cylindrical mini-implant showed a greater concentration of stress, and (2) along the spirals, in the compression side, where the conical mini-implant showed a greater concentration of stress. The greater part of the stress produced by both mini-implants, after torsion load in insertion, were concentrated on the apex. With the cylindrical mini-implant, the greater concentration of tension was close to the apex, while with the conical one, the stresses were distributed along a greater amount of apical threads.
Resumo:
In magnetic resonance imaging (MRI), either on human or animal studies, the main requirements for radiofrequency (RF) coils are to produce a homogeneous RF field while used as a transmitter coil and to have the best signal-to-noise ratio (SNR) while used as a receiver. Besides, they need to be easily frequency adjustable and have input impedance matching 50 Omega to several different load conditions. New theoretical and practical concepts are presented here for considerable enhancing of RF coil homogeneity for MRI experiments on small animals. To optimize field homogeneity, we have performed simulations using Blot and Savart law varying the coil`s window angle, achieving the optimum one. However, when the coil`s dimensions are the same order of the wave length and according to transmission line theory, differences in electrical length and effects of mutual inductances between adjacent strip conductors decrease both field homogeneity and SNR. The problematic interactions between strip conductors by means of mutual inductance were eliminated by inserting crossings at half electrical length, avoiding distortion on current density, thus eliminating sources of field inhomogeneity. Experimental results show that measured field maps and simulations are in good agreement. The new coil design, dubbed double-crossed saddle described here have field homogeneity and SNR superior than the linearly driven 8-rung birdcage coil. One of our major findings was that the effects of mutual inductance are more significant than differences in electrical length for this frequency and coil dimensions. In vitro images of a primate Cebus paela brain were acquired, confirming double-crossed saddle superiority. (C) 2010 Wiley Periodicals, Inc. Concepts Magn Reson Part B (Magn Reson Engineering) 37B: 193-201, 2010