26 resultados para Ehrlich tumor
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The aim of this study was to investigate the effect of chronic treatment with C. multijuga oil on Ehrlich tumor evolution. C multijuga was fractionated in a KOH impregnated silica gel column chromatography to give three distinct fractions, i.e., hexanic, chloroformic, and methanolic, mainly composed by hydrocarbon sesquiterpenes, oxygenated sesquiterpenes and acidic diterpenes, respectively. Results demonstrated that the C multijuga oil, the hexanic, and chloroformic fractions did not develop toxic effects. The oil, hexanic and chloroformic fractions (doses varying between 100 and 200 mg/kg) showed antineoplasic properties against Ehrlich ascitic tumor (EAT) and solid tumor during 10 consecutive days of treatment inhibiting ascitic tumor cell number, reverting medulla and blood cell counts to values similar to control group, and inhibiting the increase on several inflammatory mediators (total protein, PGE(2), nitric oxide, and TNF) on ascitic fluid. The treatment also inhibited the increase in paw volume on tumor-inoculated mice. In conclusion, C. multijugo as well as its fractions demonstrated antineoplasic effect even after oral administration confirming its use by traditional medicine. (C) 2008 Elsevier Ireland Ltd. All rights reserved.
Resumo:
This study evaluated the effects of cohabitation with a B16F10 melanoma-bearer cage mate on behavior and immune functions in mice. Five different experiments were conducted. In each of them, the female mice were divided into two groups: control and experimental. One mouse of each control pair was kept undisturbed and called ""companion of health partner"" (CHP). One mouse of each experimental pair was inoculated with B16FI0 cells and the other, the subject of this study, was called ""companion sick partner"" (CSP). On Day 20 of cohabitation, behavior and immune parameters from CHP and CSP mice were analyzed. In comparison to the CHP, the CSP mice: (1) presented an increased general locomotion in the open field and a decreased exploration time and number of entries in the plus-maze open arms; (2) had an enhanced expression of the CD80 costimulatory molecule on Iab(+)CD11c(+) spleen cells, but no differences were found on lymph nodes cells; (3) presented an altered differentiation of bone marrow cells in the presence of GM-CSF, IL-4, and LPS in vitro, resulting in a lower percentage of Iab(+)CD80(+) cells; (4) had a deficit in the establishment of a Delayed Type of Hypersensitivity to ovalbumin, which was associated to an in vitro proliferation of an IL-10-producing lymphocyte subpopulation after ovalbumin stimulation. Corticosterone levels detected on Day 20 of cohabitation were similar in CHP and CSP mice. It is shown here that DCs phenotype in mice is affected by conditions associated with behavioral alterations indicative of an anxiety-like state induced by the cohabitation with a tumor-bearer conspecific. This phenomenon occurred probably through a nondependent corticosterone mechanism. (C) 2009 Elsevier Inc. All rights reserved.
Resumo:
The objective of this work is to report the antiproliferative effect of P. cupana treatment in Ehrlich Ascites Carcinoma (EAC)-bearing animals. Female mice were treated with three doses of powdered P. cupana (100, 1000 and 2000 mg/kg) for 7 days, injected with 10(5) EAC cells and treated up to day 21. In addition, a survival experiment was carried out with the same protocol. P. cupana decreased the ascites volume (p = 0.0120), cell number (p = 0.0004) and hemorrhage (p = 0.0054). This occurred through a G1-phase arrest (p < 0.01) induced by a decreased gene expression of Cyclin D1 in EAC cells. Furthermore, P. cupana significantly increased the survival of EAC-bearing animals (p = 0.0012). In conclusion, the P. cupana growth control effect in this model was correlated with a decreased expression of cyclin D1 and a G1 phase arrest. These results reinforce the cancer therapeutic potential of this Brazilian plant. Copyright (C) 2010 John Wiley & Sons, Ltd.
Resumo:
Mast cell tumor (MCT) is one of the most prevalent neoplasms that affect skin and soft tissue in dogs. Because mast cell tumors present a great variety of clinical appearance and behavior, their treatment becomes a challenge. Trichostatin A (TSA), an antifungal antibiotic, has shown inhibitory effects on the proliferation and induction of apoptosis in various types of cancer cells. In order to evaluate the potential of trichostatin A as a therapeutic drug, cells of grade 3 MCT were cultured and treated with concentrations of 1 nM to 400 nM of TSA. MTT assay and trypan blue exclusion assays were performed to estimate cell growth and cell viability, and cell cycle analysis was evaluated. TSA treatment showed a reduction in numbers of viable cells and an increase of cell death by apoptosis. The cell cycle analysis showed an increase of hypodiploid cells and a reduction of G0/G1 and G2/M -phases. According to these results, trichostatin A may be an interesting potential chemotherapeutic agent for the treatment of canine MCT.
Resumo:
Chromosome microdeletions or duplications are detected in 10-20% of patients with mental impairment and normal karyotypes. A few cases have been reported of mental impairment with microdeletions comprising tumor suppressor genes. By array-CGH we detected 4 mentally impaired individuals carrying de novo microdeletions sharing an overlapping segment of similar to 180 kb in 17p13.1. This segment encompasses 18 genes, including 3 involved in cancer, namely KCTD11/REN, DLG4/PSD95, and GPS2. Furthermore, in 2 of the patients, the deletions also included TP53, the most frequently inactivated gene in human cancers. The 3 tumor suppressor genes KCTD11, DLG4, and GPS2, in addition to the GABARAP gene, have a known or suspected function in neuronal development and are candidates for causing mental impairment in our patients. Among our 4 patients with deletions in 17p13.1, 3 were part of a Brazilian cohort of 300 mentally retarded individuals, suggesting that this segment may be particularly prone to rearrangements and appears to be an important cause (similar to 1%) of mental retardation. Further, the constitutive deletion of tumor suppressor genes in these patients, particularly TP53, probably confers a significantly increased lifetime risk for cancer and warrants careful oncological surveillance of these patients. Constitutional chromosome deletions containing tumor suppressor genes in patients with mental impairment or congenital abnormalities may represent an important mechanism linking abnormal phenotypes with increased risks of cancer. Copyright (C) 2009 S. Karger AG, Basel
Resumo:
Here we investigated the effect of lifelong supplementation of the diet with coconut fat (CO, rich in saturated fatty acids) or fish oil (170, rich in n-3 polyunsaturated fatty acids) on tumor growth and lactate production from glucose in Walker 256 tumor cells, peritoneal macrophages, spleen, and gut-associated lymphocytes. Female Wistar rats were supplemented with CO or FO prior to mating and then throughout pregnancy and gestation and then the male offspring were supplemented from weaning until 90 days of age. Then they were inoculated subcutaneously with Walker 256 tumor cells. Tumor weight at 14 days in control rats (those fed standard chow) and CO supplemented was approximately 30 g. Supplementation of the diet with FO significantly reduced tumor growth by 76%. Lactate production (nmol h(-1) mg(-1) protein) from glucose by Walker 256 cells in the group fed regular chow (W) was 381.8 +/- 14.9. Supplementation with coconut fat (WCO) caused a significant reduction in lactate production by 1.6-fold and with fish oil (WFO) by 3.8-fold. Spleen lymphocytes obtained from W and WCO groups had markedly increased lactate production (553 +/- 70 and 635 +/- 150) when compared to non-tumor-bearing rats (similar to 260 +/- 30). FO supplementation reduced significantly the lactate production (297 +/- 50). Gut-associated lymphocytes obtained from W and WCO groups increased lactate production markedly (280 +/- 31 and 276 +/- 25) when compared to non-tumor-bearing rats (similar to 90 +/- 18). FO supplementation reduced significantly the lactate production (168 +/- 14). Lactate production by peritoneal macrophages was increased by tumor burden but there was no difference between the groups fed the various diets. Lifelong consumption of FO protects against tumor growth and modifies glucose metabolism in Walker tumor cells and lymphocytes but not in macrophages. Copyright (C) 2008 John Wiley & Sons, Ltd.
Resumo:
TNF alpha is an important mediator of catabolism in cachexia. Most of its effects have been characterized in peripheral tissues, such as skeletal muscle and fat. However, by acting directly in the hypothalamus, TNF alpha can activate thermogenesis and modulate food intake. Here we show that high concentration TNF alpha in the hypothalamus leads to increased O(2) consumption/CO(2) production, increased body temperature, and reduced caloric intake, resulting in loss of body mass. Most of the thermogenic response is produced by beta 3-adrenergic signaling to the brown adipose tissue (BAT), leading to increased BAT relative mass, reduction in BAT lipid quantity, and increased BAT mitochondria density. The expression of proteins involved in BAT thermogenesis, such as beta 3-adrenergic receptor, peroxisomal proliferator-activated receptor-gamma coactivator-1 alpha, and uncoupling protein-1, are increased. In the hypothalamus, TNF alpha produces reductions in neuropeptide Y, agouti gene-related peptide, proopiomelanocortin, and melanin-concentrating hormone, and increases CRH and TRH. The activity of the AMP-activated protein kinase signaling pathway is also decreased in the hypothalamus of TNF alpha-treated rats. Upon intracerebroventricular infliximab treatment, tumor-bearing and septic rats present a significantly increased survival. In addition, the systemic inhibition of beta 3-adrenergic signaling results in a reduced body mass loss and increased survival in septic rats. These data suggest hypothalamic TNF alpha action to be important mediator of the wastage syndrome in cachexia. (Endocrinology 151: 683-694, 2010)
Resumo:
In diet-induced obesity, hypothalamic and systemic inflammatory factors trigger intracellular mechanisms that lead to resistance to the main adipostatic hormones, leptin and insulin. Tumor necrosis factor-alpha (TNF-alpha) is one of the main inflammatory factors produced during this process and its mechanistic role as an inducer of leptin and insulin resistance has been widely investigated. Most of TNF-alpha inflammatory signals are delivered by TNF receptor 1 (R1); however, the role played by this receptor in the context of obesity-associated inflammation is not completely known. Here, we show that TNFR1 knock-out (TNFR1 KO) mice are protected from diet-induced obesity due to increased thermogenesis. Under standard rodent chow or a high-fat diet, TNFR1 KO gain significantly less body mass despite increased caloric intake. Visceral adiposity and mean adipocyte diameter are reduced and blood concentrations of insulin and leptin are lower. Protection from hypothalamic leptin resistance is evidenced by increased leptin-induced suppression of food intake and preserved activation of leptin signal transduction through JAK2, STAT3, and FOXO1. Under the high-fat diet, TNFR1 KO mice present a significantly increased expression of the thermogenesis-related neurotransmitter, TRH. Further evidence of increased thermogenesis includes increased O(2) consumption in respirometry measurements, increased expressions of UCP1 and UCP3 in brown adipose tissue and skeletal muscle, respectively, and increased O(2) consumption by isolated skeletal muscle fiber mitochondria. This demonstrates that TNF-alpha signaling through TNFR1 is an important mechanism involved in obesity-associated defective thermogenesis.
Resumo:
The incidence of melanoma is increasing worldwide. It is one of the leading cancers in pregnancy and the most common malignancy to metastasize to placenta and fetus. There are no publications about experimental models of melanoma and pregnancy. We propose a new experimental murine model to study the effects of melanoma on pregnancy and its metastatic process. We tested several doses of melanoma cells until we arrived at the optimal dose, which produced tumor growth and allowed animal survival to the end of pregnancy. Two control groups were used: control (C) and stress control (SC) and three different routes of inoculation: intravenous (IV), intraperitoneal (IP) and subcutaneous (SC). All the fetuses and placentas were examined macroscopically and microscopically. The results suggest that melanoma is a risk factor for intrauterine growth restriction but does not affect placental weight. When inoculated by the SC route, the tumor grew only in the site of implantation. The IP route produced peritoneal tumoral growth and also ovarian and uterine metastases in 60% of the cases. The IV route produced pulmonary tumors. No placental or fetal metastases were obtained, regardless of the inoculation route. The injection of melanoma cells by any route did not increase the rate of fetal resorptions. Surprisingly, animals in the IV groups had no resorptions and a significantly higher number of fetuses. This finding may indicate that tumoral factors released in the host organism to favor tumor survival may also have a pro-gestational action and consequently improve the reproductive performance of these animals.
Resumo:
Aims: The objective of this study was to analyze the influence of obesity and insulin resistance on tumor development and, in turn, the effect of insulin sensitizing agents. Main methods: Male offspring of Wistar rats received monosodium glutamate (400 mg/kg) (obese) or saline (control) from the second to sixth day after birth. Sixteen-week-old control and obese rats received 5 x 10(5) Walker-256 tumor cells, subcutaneously injected into the right flank. Some of the obese and control rats received concomitant treatment with metformin (300 mg/kg) by gavage. At the 18th week, obesity was characterized. The percentage of rats that developed tumors, the tumor relative weight and the percentage of cachexia incidence were analyzed. The tumor tissue was evaluated histologically by means of hematoxylin and eosin staining. Key findings: Metformin did not correct the insulin resistance in obese rats. The tumor development was significantly higher in the obese group, whereas metformin treatment reduced it. After pathological analysis, we observed that the tumor tissues were similar in all groups except for adipocytes, which were found in greater quantity in the obese and metformin-treated obese groups. The area of tumor necrosis was higher in the group treated with metformin when compared with the untreated one. Significance: Metformin reduced Walker-256 tumor development but not cachexia in obese rats. The reduction occurred independently of the correction of insulin resistance. Metformin increased the area of necrosis in tumor tissues, which may have contributed to the reduced tumor development. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Melanoma is the most aggressive form of skin cancer, and its incidence has increased dramatically over the years. The murine B16F10 melanoma in syngeneic C57Bl/6 mice has been used as a highly aggressive model to investigate tumor development. Presently, we demonstrate in the B16F10-Nex2 subclone that silencing of SOCS-1, a negative regulator of Jak/Stat pathway, leads to reversal of the tumorigenic phenotype and inhibition of melanoma cell metastasis. SOCS-1 silencing with short hairpin RNA affected tumor growth and cell cycle regulation with arrest at the S phase with large-sized nuclei, reduced cell motility, and decreased melanoma cell invasion through Matrigel. A clonogenic assay showed that SOCS-1 acted as a modulator of resistance to anoikis. In addition, down-regulation of SOCS-1 decreased the expression of epidermal growth factor receptor ( mainly the phosphorylated-R), Ins-R alpha, and fibroblast growth factor receptor. In vivo, silencing of SOCS-1 inhibited subcutaneous tumor growth and metastatic development in the lungs. Because SOCS-1 is expressed in most melanoma cell lines and bears a relation with tumor invasion, thickness, and stage of disease, the present results on the effects of SOCS-1 silencing in melanoma suggest that this regulating protein can be a target of cancer therapy.
Resumo:
Intestinal ischemia-reperfusion (I/R) injury may cause acute systemic and lung inflammation. Here, we revisited the role of TNF-alpha in an intestinal I/R model in mice, showing that this cytokine is not required for the local and remote inflammatory response upon intestinal I/R injury using neutralizing TNF-alpha antibodies and TNF ligand-deficient mice. We demonstrate increased neutrophil recruitment in the lung as assessed by myeloperoxidase activity and augmented IL-6, granulocyte colony-stimulating factor, and KC levels, whereas TNF-alpha levels in serum were not increased and only minimally elevated in intestine and lung upon intestinal I/R injury. Importantly, TNF-alpha antibody neutralization neither diminished neutrophil recruitment nor any of the cytokines and chemokines evaluated. In addition, the inflammatory response was not abrogated in TNF and TNF receptors 1 and 2-deficient mice. However, in view of the damage on the intestinal barrier upon intestinal I/R with systemic bacterial translocation, we asked whether Toll-like receptor (TLR) activation is driving the inflammatory response. In fact, the inflammatory lung response is dramatically reduced in TLR2/4-deficient mice, confirming an important role of TLR receptor signaling causing the inflammatory lung response. In conclusion, endogenous TNF-alpha is not or minimally elevated and plays no role as a mediator for the inflammatory response upon ischemic tissue injury. By contrast, TLR2/4 signaling induces an orchestrated cytokine/chemokine response leading to local and remote pulmonary inflammation, and therefore disruption of TLR signaling may represent an alternative therapeutic target.
Resumo:
Nonsteroidal antiinflammatory drugs (NSAIDs) have been shown to reduce cell growth in several tumors. Among these possible antineoplastic drugs are cyclooxygenase-2 (COX-2)-selective drugs, such as celecoxib, in which antitumoral mechanisms were evaluated in rats bearing Walker-256 (W256) tumor. W256 carcinosarcoma cells were inoculated subcutaneously (10(7) cells/rat) in rats submitted to treatment with celecoxib (25 mg kg(-1)) or vehicle for 14 days. Tumor growth, body-weight gain, and survival data were evaluated. The mechanisms, such as COX-2 expression and activity, oxidative stress, by means of enzymes and lipoperoxidation levels, and apoptosis mediators were also investigated. A reduction in tumor growth and an increased weight gain were observed. Celecoxib provided a higher incidence of survival compared with the control group. Cellular effects are probably COX-2 independent, because neither enzyme expression nor its activity, measured by tumoral PGE(2), showed significant difference between groups. It is probable that this antitumor action is dependent on an apoptotic way, which has been evaluated by the expression of the antiapoptotic protein Bcl-xL, in addition to the cellular changes observed by electronic microscopy. Celecoxib has also a possible involvement with redox homeostasis, because its administration caused significant changes in the activity of oxidative enzymes, such as catalase and superoxide dismutase. These results confirm the antitumor effects of celecoxib in W256 cancer model, contributing to elucidating its antitumoral mechanism and corroborating scientific literature about its effect on other types of cancer.
Resumo:
The present paper shows, for the first time, the membrane expression of the dendritic cell maturation marker CD83 on tumor cells from lung cancer patients. CD83 was also detected on freshly cultured fibroblast-like cells from these tissues and on several adherent human tumor cell lines (lung adenocarcinomas P9, A459 and A549, melanomas A375 and C81-61, breast adenocarcinomas SKBR-3 and MCF-7 and colon carcinoma AR42-J), but not in the non-adherent MOT leukemia cell line. CD83 may have immunosuppressive properties and its expression by cancer cells could have a role in facilitating tumor growth.
Resumo:
Background and Objective: Inflammatory cytokines such as tumor necrosis factor-alpha are involved in the pathogenesis of periodontal diseases. A high between-subject variation in the level of tumor necrosis factor-alpha mRNA has been verified, which may be a result of genetic polymorphisms and/or the presence of periodontopathogens such as Porphyromonas gingivalis, Tannerella forsythia, Treponema denticola (called the red complex) and Aggregatibacter actinomycetemcomitans. In this study, we investigated the effect of the tumor necrosis factor-alpha (TNFA) -308G/A gene polymorphism and of periodontopathogens on the tumor necrosis factor-alpha levels in the periodontal tissues of nonsmoking patients with chronic periodontitis (n = 127) and in control subjects (n = 177). Material and Methods: The TNFA-308G/A single nucleotide polymorphism was investigated using polymerase chain reaction-restriction fragment length polymorphism analysis, whereas the tumor necrosis factor-alpha levels and the periodontopathogen load were determined using real-time polymerase chain reaction. Results: No statistically significant differences were found in the frequency of the TNFA-308 single nucleotide polymorphism in control and chronic periodontitis groups, in spite of the higher frequency of the A allele in the chronic periodontitis group. The concomitant analyses of genotypes and periodontopathogens demonstrated that TNFA-308 GA/AA genotypes and the red-complex periodontopathogens were independently associated with increased levels of tumor necrosis factor-alpha in periodontal tissues, and no additive effect was seen when both factors were present. P. gingivalis, T. forsythia and T. denticola counts were positively correlated with the level of tumor necrosis factor-alpha. TNFA-308 genotypes were not associated with the periodontopathogen detection odds or with the bacterial load. Conclusion: Our results demonstrate that the TNFA-308 A allele and red-complex periodontopathogens are independently associated with increased levels of tumor necrosis factor-alpha in diseased tissues of nonsmoking chronic periodontitis patients and consequently are potentially involved in determining the disease outcome.