12 resultados para Edifício-ponte

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

This paper presents a male specimen of Sciopemyia sordellii with a rare bilateral anomaly, consisting in eight spines in a style and five in the other. This species has four spines in each style as its normal number. The specimen was captured using a CDC light trap, in a forested area in the State Park ""Floresta Estadual Edmundo Navarro de Andrade"", in May 2004, located in the city of Rio Claro, Sao Paulo State, Brazil. Similar anomaly was once described but this is the first specimen found with a bilateral alteration. It may cause confusion in taxonomic identification and even lead to description of new species, increasing the number of synonymies.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Zirconium- and Ba-rich minerals are found in gabbroic rocks from the Ponte Nova alkaline mafic-ultramafic massif in southeastern Brazil. The unusual mineralogical assemblage includes zirconolite, baddeleyite, Ba-rich alkali feldspar, and Ba- and Ti-rich biotite. Zirconolite of the Ponte Nova massif has higher levels of Zr (up to 1.172 apfu) than those registered in other terrestrial rocks and a prominent enrichment in the light rare-earth elements. Baddeleyite contains small quantities of Hf, Ti, and Fe. The Ba-rich alkali feldspar and Ba- and Ti-rich biotite contain up to 9.25 and 7.35 wt% BaO, respectively, and the biotite contains up to 12.01 wt% TiO(2). In the different intrusions of the Ponte Nova massif, such an unusual assemblage typifies the residual magma after the crystallization of clinopyroxene and olivine from previously enriched basanitic parental magma. The different trends of enrichments in REE and Th + U found for zirconolite of the intrusions of the Ponte Nova massif provide a better understanding of the variable degrees of enrichment of incompatible elements of the distinct gabbroic bodies. A lithospheric mantle source enriched in incompatible elements by the metasomatic action of volatile-rich fluids and with the presence of phlogopite or amphibole (or both) and other minor accessory phases could explain the presence of the Zr- and Ba-rich minerals in this gabbroic massif.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

A detailed rock magnetic and paleomagnetic study was performed on samples from the Neoproterozoic Itajai Basin in the state of Santa Catarina, Brazil, in order to better constrain the paleogeographic evolution of the Rio de la Plata craton between 600 and 550 Ma. However, rock magnetic properties typical of remagnetized rocks and negative response in the fold test indicated that these rocks carried a secondary chemical remanent magnetization. After detailed AF and thermal cleaning, almost all samples showed a normal polarity characteristic remanent magnetization component close to the present geomagnetic field. The main magnetic carriers are magnetite and hematite, probably of authigenic origin. The mean paleomagnetic pole of the ltajai Basin is located at Plat= -84 degrees, Plong = 97.5 degrees (A95 = 2 degrees) and overlaps the lower Cretaceous segment of the apparent polar wander path of South America, suggesting a cause and effect with the opening of the South Atlantic Ocean. A compilation of remagnetized paleomagnetic poles from South America is presented that highlights the superposition of several large-scale remagnetization events between the Cambrian and the Cretaceous. It is suggested that some paleomagnetic poles used to calibrate the APWP of Gondwana at Precambrian times need to be revised; the indication of remagnetized areas in southern South America may offer some help in the selection of sites for future paleomagnetic investigations in Precambrian rocks. (C) 2011 International Association for Gondwana Research. Published by Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We present a technique to build, within a dissipative bosonic network, decoherence-free channels (DFCs): a group of normal-mode oscillators with null effective damping rates. We verify that the states protected within the DFC define the well-known decoherence-free subspaces (DFSs) when mapped back into the natural network oscillators. Therefore, our technique to build protected normal-mode channels turns out to be an alternative way to build DFSs, which offers advantages over the conventional method. It enables the computation of all the network-protected states at once, as well as leading naturally to the concept of the decoherence quasi-free subspace (DQFS), inside which a superposition state is quasi-completely protected against decoherence. The concept of the DQFS, weaker than that of the DFS, may provide a more manageable mechanism to control decoherence. Finally, as an application of the DQFSs, we show how to build them for quasi-perfect state transfer in networks of coupled quantum dissipative oscillators.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We propose a method to compute the entanglement degree E of bipartite systems having dimension 2 x 2 and demonstrate that the partial transposition of density matrix, the Peres criterion, arise as a consequence Of Our method. Differently from other existing measures of entanglement, the one presented here makes possible the derivation of a criterion to verify if an arbitrary bipartite entanglement will suffers sudden death (SD) based only on the initial-state parameters. Our method also makes possible to characterize the SD as a dynamical quantum phase transition, with order parameter epsilon. having a universal critical exponent -1/2. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work we investigate the dynamical Casimir effect in a nonideal cavity by deriving an effective Hamiltonian. We first compute a general expression for the average number of particle creation, applicable for any law of motion of the cavity boundary, under the only restriction of small velocities. We also compute a general expression for the linear entropy of an arbitrary state prepared in a selected mode, also applicable for any law of motion of a slow moving boundary. As an application of our results we have analyzed both the average number of particle creation and linear entropy within a particular oscillatory motion of the cavity boundary. On the basis of these expressions we develop a comprehensive analysis of the resonances in the number of particle creation in the nonideal dynamical Casimir effect. We also demonstrate the occurrence of resonances in the loss of purity of the initial state and estimate the decoherence times associated with these resonances. Since our results were obtained in the framework of the perturbation theory, they are restricted, under resonant conditions, to a short-time approximation. (C) 2009 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we extend the results presented in (de Ponte, Mizrahi and Moussa 2007 Phys. Rev. A 76 032101) to treat quantitatively the effects of reservoirs at finite temperature in a bosonic dissipative network: a chain of coupled harmonic oscillators whatever its topology, i.e., whichever the way the oscillators are coupled together, the strength of their couplings and their natural frequencies. Starting with the case where distinct reservoirs are considered, each one coupled to a corresponding oscillator, we also analyze the case where a common reservoir is assigned to the whole network. Master equations are derived for both situations and both regimes of weak and strong coupling strengths between the network oscillators. Solutions of these master equations are presented through the normal ordered characteristic function. These solutions are shown to be significantly involved when temperature effects are considered, making difficult the analysis of collective decoherence and dispersion in dissipative bosonic networks. To circumvent these difficulties, we turn to the Wigner distribution function which enables us to present a technique to estimate the decoherence time of network states. Our technique proceeds by computing separately the effects of dispersion and the attenuation of the interference terms of the Wigner function. A detailed analysis of the dispersion mechanism is also presented through the evolution of the Wigner function. The interesting collective dispersion effects are discussed and applied to the analysis of decoherence of a class of network states. Finally, the entropy and the entanglement of a pure bipartite system are discussed.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

By considering a network of dissipative quantum harmonic oscillators, we deduce and analyse the optimum topologies which are able to store quantum superposition states, protecting them from decoherence, for the longest period of time. The storage is made dynamically, in that the states to be protected evolve through the network before being retrieved back in the oscillator where they were prepared. The decoherence time during the dynamic storage process is computed and we demonstrate that it is proportional to the number of oscillators in the network for a particular regime of parameters.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper, we demonstrate that the inevitable action of the environment can be substantially weakened when considering appropriate nonstationary quantum systems. Beyond protecting quantum states against decoherence, an oscillating frequency can be engineered to make the system-reservoir coupling almost negligible. Differently from the program for engineering reservoir and similarly to the schemes for dynamical decoupling of open quantum systems, our technique does not require previous knowledge of the state to be protected. However, differently from the previously-reported schemes for dynamical decoupling, our technique does not rely on the availability of tailored external pulses acting faster than the shortest timescale accessible to the reservoir degree of freedom.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this work, we identify the set of time-dependent pure states building the statistical mixture to which a system, initially in a pure state, is driven by the reservoir. This set of time-dependent pure states, composing what we term a pure basis, are those that diagonalize the reduced density operator of the system. Next, we show that the evolution of the pure-basis states reveals an interesting phenomenon as the system, after decoherence, evolves toward the equilibrium: the spontaneous recoherence of quantum states. Around our defined recoherence time, the statistical mixture associated with a special kind of initial states termed even-symmetric, spontaneously undergoes a recoherence process, by which the initial state of the system emerges from the mixture except for its reduced excitation drained into the reservoir. This phenomenon reveals that the reservoir only shuffle the original information carried out by the initial state of the system instead of erasing it. Moreover, as the spontaneously recohered state occurs only for asymptotic time, we also present a protocol to extract it from the mixture through specific projective measurements. The password to retrieve the original information stems is the knowledge of both the initial state itself and the associated pure basis. A definition of the decoherence time of an N-state superposition is also presented.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we analyze the double Caldeira-Leggett model: the path integral approach to two interacting dissipative harmonic oscillators. Assuming a general form of the interaction between the oscillators, we consider two different situations: (i) when each oscillator is coupled to its own reservoir, and (ii) when both oscillators are coupled to a common reservoir. After deriving and solving the master equation for each case, we analyze the decoherence process of particular entanglements in the positional space of both oscillators. To analyze the decoherence mechanism we have derived a general decay function, for the off-diagonal peaks of the density matrix, which applies both to common and separate reservoirs. We have also identified the expected interaction between the two dissipative oscillators induced by their common reservoir. Such a reservoir-induced interaction, which gives rise to interesting collective damping effects, such as the emergence of relaxation- and decoherence-free subspaces, is shown to be blurred by the high-temperature regime considered in this study. However, we find that different interactions between the dissipative oscillators, described by rotating or counter-rotating terms, result in different decay rates for the interference terms of the density matrix. (C) 2010 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In this paper we propose a scheme for quasi-perfect state transfer in a network of dissipative harmonic oscillators. We consider ideal sender and receiver oscillators connected by a chain of nonideal transmitter oscillators coupled by nearest-neighbour resonances. From the algebraic properties of the dynamical quantities describing the evolution of the network state, we derive a criterion, fixing the coupling strengths between all the oscillators, apart from their natural frequencies, enabling perfect state transfer in the particular case of ideal transmitter oscillators. Our criterion provides an easily manipulated formula enabling perfect state transfer in the special case where the network nonidealities are disregarded. We also extend such a criterion to dissipative networks where the fidelity of the transferred state decreases due to the loss mechanisms. To circumvent almost completely the adverse effect of decoherence, we propose a protocol to achieve quasi-perfect state transfer in nonideal networks. By adjusting the common frequency of the sender and the receiver oscillators to be out of resonance with that of the transmitters, we demonstrate that the sender`s state tunnels to the receiver oscillator by virtually exciting the nonideal transmitter chain. This virtual process makes negligible the decay rate associated with the transmitter line at the expense of delaying the time interval for the state transfer process. Apart from our analytical results, numerical computations are presented to illustrate our protocol.