16 resultados para ETHYLENE COPOLYMERS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Endospermic legumes are abundant in tropical forests and their establishment is closely related to the mobilization of cell-wall storage polysaccharides. Endosperm cells also store large numbers of protein bodies that play an important role as a nitrogen reserve in this seed. In this work, a systems approach was adopted to evaluate some of the changes in carbohydrates and hormones during the development of seedlings of the rain forest tree Sesbania virgata during the period of establishment. Seeds imbibed abscisic acid (ABA), glucose and sucrose in an atmosphere of ethylene, and the effects of these compounds on the protein contents, alpha-galactosidase activity and endogenous production of ABA and ethylene by the seeds were observed. The presence of exogenous ABA retarded the degradation of storage protein in the endosperm and decreased alpha-galactosidase activity in the same tissue during galactomannan degradation, suggesting that ABA represses enzyme action. On the other hand, exogenous ethylene increased alpha-galactosidase activity in both the endosperm and testa during galactomannan degradation, suggesting an inducing effect of this hormone on the hydrolytic enzymes. Furthermore, the detection of endogenous ABA and ethylene production during the period of storage mobilization and the changes observed in the production of these endogenous hormones in the presence of glucose and sucrose, suggested a correlation between the signalling pathway of these hormones and the sugars. These findings suggest that ABA, ethylene and sugars play a role in the control of the hydrolytic enzyme activities in seeds of S. virgata, controlling the process of storage degradation. This is thought to ensure a balanced flow of the carbon and nitrogen for seedling development.
Resumo:
Ethylene is a plant hormone that is of fundamental importance to in vitro morphogenesis, but in many species, it has not been thoroughly studied. Its relationship with polyamines has been studied mainly because the two classes of hormones share a common biosynthetic precursor, S-adenosylmethionine (SAM). In order to clarify whether competition between polyamines and ethylene influences in vitro morphogenetic responses of Passiflora cincinnata Mast., a climacteric species, different compounds were used that act on ethylene biosynthesis and action, or as ethylene scavengers. Treatment with the ethylene inhibitor, aminoethoxyvinylglycine (AVG) caused a greater regeneration frequency in P. cincinnata, whereas treatment with the ethylene precursor, 1-aminocyclopropane-1-carboxylic-acid (ACC) lessened regeneration frequencies. The data suggested that levels of polyamines and ethylene are not correlated with morphogenic responses in P. cincinnata. It was ascertained that neither the absolute ethylene and polyamine levels, nor competition between the compounds, correlated to the obtained morphogenic responses. However, sensitivity to, and signaling by, ethylene appears to play an important role in differentiation. This study reinforces previous reports regarding the requirement of critical concentrations and temporal regulation of ethylene levels for morphogenic responses. Temporal regulation also appeared to be a key factor in competition between the two biosynthetic pathways, without having any effects on morphogenesis. Further studies investigating the silencing or overexpression of genes related to ethylene perception, under the influence of polyamines in cell differentiation are extremely important for the complete understanding of this process.
Resumo:
Levels of ethylene and polyamines (PAs) were measured during organogenesis of hypocotyl explants of two species of passion fruit (Passiflora cincinnata Masters and Passiflora edulis Sims f. flavicarpa Degener `FB-100`) to better understand the relationships of these regulators and their influence on cell differentiation and morphogenesis. Moreover, histological investigation of shoot ontogenesis was conducted to characterize the different events involved in cell redifferentiation and regulation of PA and ethylene levels. A delay was observed in morphogenic responses of P. edulis f. flavicarpa as compared to P. cincinnata, and these changes coincided with production of elevated levels of polyamine and ethylene levels. During differentiation, cells showed high rates of expansion and elongation, and high ethylene levels were associated with high PA levels, suggesting that the two biosynthesis pathways were highly regulated. Moreover, their interaction might be an important factor for determining cell differentiation. The addition of PAs to the culture medium did not promote organogenesis; however, the incorporation of the PA inhibitor methylglyoxal bisguanylhydrazone in the culture medium reduced shoot bud differentiation, suggesting the need to maintaining a minimum level of PAs for morphogenic events to take place.
Resumo:
The present work shows the growth of nordstrandile microcrystals observed by transmission and scanning electron microscopy. Nordstrandite was synthesised from non-crystalline aluminium hydroxide reacted in 20% ethylene glycol/water solution, at room temperature. This material was characterized by TEM, SEM, SAED, XRD and EDS/TEM, during six month and revealed the formation and growth of nordstrandite. Fibrillar pseudoboehmite is the only aluminium hydroxide which could be identified during the first two weeks. The nuclei grow, from complete dissolution/recrystallization of pseudoboehmite fibrils, into platy rectangular microscrystals of nordstrandite. Some tabular microcrystals recrystallise, forming after six months only the mufti-point nordstrandite stars. This electron-optical study suggest that the star shape results from the overlapping of rectangular plates, and pseudoboehmite fibrils act as the precursor of nordstrandite crystallisation in ethylene glycol/water solution.
Resumo:
In this paper, calcium molybdate (CaMoO(4)) crystals (meso- and nanoscale) were synthesized by the coprecipitation method using different solvent volume ratios (water/ethylene glycol). Subsequently, the obtained suspensions were processed in microwave-assisted hydrothermal/solvothermal systems at 140 degrees C for 1 h. These meso- and nanocrystals processed were characterized by X-ray diffraction (X R I)), Fourier transform Raman (FT-Raman), Fourier transform infrared (FT-IR). ultraviolet visible (UV-vis) absorption spectroscopies, held-emission gun scanning electron microscopy (FEG-SEM). transmission electron microscopy (TEM). and photoluminescence (PL) measurements. X RI) patterns and FT-Raman spectra showed that these meso- and nanocrystals have a scheelite-type tetragonal structure without the presence of deleterious phases. FT-IR spectra exhibited a large absorption band situated at around 827 cm(-1), which is associated with the Mo-O anti-symmetric stretching vibrations into the [MoO(4)] clusters. FEG-SEM micrographs indicated that the ethylene glycol concentration in the aqueous solution plays an important role in the morphological evolution of CaMoO(4) crystals. High-resolution TEM micrographs demonstrated that the mesocrystals consist of several aggregated nanoparticles with electron diffraction patterns of monocrystal. In addition, the differences observed in the selected area electron diffraction patterns of CaMoO(4) crystals proved the coexistence of both nano- and mesostructures, First-principles quantum mechanical calculations based on the density functional theory at the B3LYP level were employed in order to understand the band structure find density of states For the CaMoO(4). UV-vis absorption measurements evidenced a variation in optical band gap values (from 3.42 to 3.72 cV) for the distinct morphologies. The blue and green PI. emissions observed in these crystals were ascribed to the intermediary energy levels arising from the distortions on the [MoO(4)] clusters clue to intrinsic defects in the lattice of anisotropic/isotropic crystals.
Resumo:
Oligonucleotides have unique molecular recognition properties, being involved in biological mechanisms such as cell-surface receptor recognition or gene silencing. For their use in human therapy for drug or gene delivery, the cell membrane remains a barrier, but this can be obviated by grafting a hydrophobic tail to the oligonucleotide. Here we demonstrate that two oligonucleotides, one consisting of 12 guanosine units (G(12)), and the other one consisting of five adenosine and seven guanosine (A(5)G(7)) units, when functionalized with poly(butadiene), namely PB-G(12) and PB-A(5)G(7), can be inserted into Langmuir monolayers of dipalmitoyl phosphatidyl choline (DPPC), which served as a cell membrane model. PB-G(12) and PB-A(5)G(7) were found to affect the DPPC monolayer even at high surface pressures. The effects from PB-G(12) were consistently stronger, particularly in reducing the elasticity of the DPPC monolayers, which may have important biological implications. Multilayers of DPPC and nucleotide-based copolymers could be adsorbed onto solid supports, in the form of Y-type LB films, in which the molecular-level interaction led to lower energies in the vibrational spectra of the nucleotide-based copolymers. This successful deposition of solid films opens the way for devices to be produced which exploit the molecular recognition properties of the nucleotides. (C) 2010 Elsevier Inc. All rights reserved.
Resumo:
The control of molecular architectures may be essential to optimize materials properties for producing luminescent devices from polymers, especially in the blue region of the spectrum. In this Article, we report on the fabrication of Langmuir-Blodgett (LB) films of polyfluorene copolymers mixed with the phospholipid dimyristoyl phosphatidic acid (DMPA). The copolymers poly(9.9-dioetylfluorene)-co-phenylene (copolymer I) and poly(9,9-dioctylfluorene)-co-quaterphenylene) (copolymer 2) were synthesized via Suzuki reaction. Copolymer I could not form a monolayer on its own, but it yielded stable films when mixed with DMPA. In contrast, Langmuir monolayers could be formed from either the neat copolymer 2 or when mixed with DMPA. The surface pressure and surface potential measurements, in addition to Brewster angle microscopy, indicated that DMPA provided a suitable matrix for copolymer I to form a stable Langmuir film, amenable to transfer as LB films, while enhancing the ability of copolymer 2 to form LB films with enhanced emission, as indicated by fluorescence spectroscopy. Because a high emission was obtained with the mixed LB films and since the molecular-level interactions between the film components can be tuned by changing the experimental conditions to allow For further optimization, one may envisage applications of these films in optical devices such as organic light-emitting diodes (OLEDs).
Resumo:
The microphase structure of a series of polystyrene-b-polyethylene oxide-b-polystyrene (SEOS) triblock copolymers with different compositions and molecular weights has been studied by solid-state NMR, DSC, wide and small angle X-ray scattering (WAXS and SAXS). WAXS and DSC measurements were used to detect the presence of crystalline domains of polyethyleneoxide (PEO) blocks at room temperature as a function of the copolymer chemical composition. Furthermore, DSC experiments allowed the determination of the melting temperatures of the crystalline part of the PEO blocks. SAXS measurements, performed above and below the melting temperature of the PEO blocks, revealed the formation of periodic structures, but the absence or the weakness of high order reflections peaks did not allow a clear assessment of the morphological structure of the copolymers. This information was inferred by combining the results obtained by SAXS and (1)H NMR spin diffusion experiments, which also provided an estimation of the size of the dispersed phases of the nanostructured copolymers. (C) 2009 Wiley Periodicals, Inc. J Polym Sci Part B: Polym Phys 48:55-64,2010
Resumo:
Thermally stable elastomeric composites based on ethylene-propylene-diene monomer (EPDM) and conducting polymer-modified carbon black (CPMCB) additives were produced by casting and crosslinked by compression molding. CPMCB represent a novel thermally stable conductive compound made via ""in situ"" deposition of intrinsically conducting polymers (ICP) such as polyaniline or polypyrrole on carbon black particles. Thermogravimetric analysis showed that the composites are thermally stable with no appreciable degradation at ca. 300 degrees C. Incorporating CPMCB has been found to be advantageous to the processing of composites, as the presence of ICP lead to a better distribution of the filler within the rubber matrix, as confirmed by morphological analysis. These materials have a percolation threshold range of 5-10 phr depending on the formulation and electrical dc conductivity values in the range of 1 x 10(-3) to 1 x 10(-2) S cm(-1) above the percolation threshold. A less pronounced reinforcing effect was observed in composites produced with ICP-modified additives in relation to those produced only with carbon black. The results obtained in this study show the feasibility of this method for producing stable, electrically conducting composites with elastomeric characteristics. POLYM. COMPOS., 30:897-906, 2009. (C) 2008 Society of Plastics Engineers
Resumo:
Fluorene and thiophene units are commonly used in polymeric materials for electro-optical applications. Due to differences in reactivity, the final composition of polymers containing these components often differs from that used in their preparation. This contribution describes the synthesis of PPV type terpolymers built by fluorene, phenylene and thiophene units and their quantification by CPMAS NMR. The similarity of the three aromatic co-monomers makes it difficult to separate the analytical responses that would allow quantification of each copolymer unit in the chain. In this sense, we show that the combination of dipolar dephased CPMAS with radiofrequency ramp and proper spectral treatment allows a good estimation and quantification of the copolymer constitution. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
A new aliphatic block copolyester was synthesized in bulk from transesterification techniques between poly((R)-3-hydroxybutyrate) (PHB) and poly(isosorbide succinate) (PIS). Additionally, other two block copolyesters were synthesized in bulk either from transesterification reactions involving PHB and poly(l-lactide) (PLLA) or from ring-opening copolymerization of l-lactide and hydroxyl-terminated PHB, as result of a previous transesterification reactions with isosorbide. Two-component blends of PHB and PIS or PLLA were also prepared as comparative systems. SEC, MALDI-TOF mass spectrometry (MALDI-TOFMS), (1)H and (13)C NMR spectroscopy, WAXD, solubility tests, and TG thermal analysis were used for characterization. The block copolymer structures of the products were evidenced by MALDI-TOFMS, (13)C NMR, and WAXD data. The block copolymers and the corresponding binary blends presented different solubility properties, as revealed by solubility tests. Although the incorporation of PIS sequences into PHB main backbone did not enhance the thermal stability of the product, it reduced its crystallinity, which could be advantageous for faster biodegradation rate. These products, composed of PHB and PIS or PLLA sequences, are an interesting alternative in biomedical applications.
Resumo:
Photochemical and photophysical properties of fac-[Re(CO)(3)(Clphen)(trans-L)](+) complexes, Clphen = 5-chloro-1,10-phenathroline and L = 1,2-bis(4-pyridyl)ethylene, bpe, or 4-styrylpyridine, stpy, were investigated to complement the understanding of intramolecular energy transfer process in tricarbonyl rhenium(I) complexes having an electron withdrawing group attached to polypyridyl ligands. These new compounds were synthesized, characterized and the photoisomerization quantum yields were accurately determined by (1)H NMR spectroscopy. The true quantum yields for fac-[Re(CO)(3)(Clphen) (trans-bpe)](+) were constant (Phi = 0.55) at all investigated irradiation wavelengths. However, for fac-[Re(CO)(3)(Clphen)(trans-stpy)](+), similar true quantum yields were observed only at higher energy irradiation (Phi(313 nm) = 0.53 and Phi(365 nm) = 0.57), but it decreased significantly at 404 nm (Phi = 0.41). These results indicated different deactivation pathways for the trans-stpy complex photoisomerization. Quantum yields decreased as the (3)IL(trans-L) and (3)MLCT(Re -> NN) excited states become closer and the behavior was discussed in terms of the excited state energy gaps. Additionally, luminescence properties of photoproducts, fac-[Re(CO)(3)(Clphen)(cis-L)](+), were also investigated in different environments to analyze the relative energy of the (3)MLCT(Re -> Clphen) excited state for each compound. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Raman spectra of polymer electrolytes based on poly(ethylene glycol) dimethyl ether (PEGdME) with LiClO(4), PEGdME/LiClO(4), and the ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate, PEGdME/[bmim]PF(6), are compared. Raman spectroscopy suggests stronger interactions in PEGdME/LiClO(4) than PEGdmE/[bmim]PF(6), thus corroborating previous results obtained by molecular dynamics simulations. Quantum Chemistry methods have been used to calculate vibrational frequencies and the equilibrium structure of segments of the polymer chain around the cation. A consistent picture has been obtained from Raman spectroscopy, density functional theory (DFT) calculations, and molecular dynamics simulations for these polymer electrolytes. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
Fluorescent probes derivated from auramine, 1-aminopyrene, and 9-aminoacridine containing a malononitrile group are copolymerized with methyl methacrylate. These new fluorescent polymeric materials are studied in solution of different solvents by steady-state and time-resolved emission techniques. Their spectroscopic properties and excited state dynamics are driven by charge transfer from the aromatic group to the electron withdrawing CN groups, and this factor is responsible for the non-exponential emission decay behavior. (c) 2008 Elsevier B.V. All rights reserved.
Resumo:
Different compositions of visible-light-curable triethylene glycol dimethacrylate/bisglycidyl methacrylate copolymers used in dental resin formulations were prepared through copolymerization photoinitiated by a camphorquinone/ethyl 4-dimethylaminobenzoate system irradiated with an Ultrablue IS light-emitting diode. The obtained copolymers were evaluated with differential scanning calorimetry. From the data for the heat of polymerization, before and after light exposure, obtained from exothermic differential scanning calorimetry curves, the light polymerization efficiency or degree of conversion of double bonds was calculated. The glass-transition temperature also was determined before and after photopolymerization. After the photopolymerization, the glass-transi-tion temperature was not well defined because of the breadth of the transition region associated with the properties of the photocured dimethacrylate. The glass-transition temperature after photopolymerization was determined experimentally and compared with the values determined with the Fox equation. In all mixtures, the experimental value was lower than the calculated value. Scanning electron microscopy was used to analyze the morphological differences in the prepared copolymer structures. (C) 2007 Wiley Periodicals, Inc.