6 resultados para ERIOPHYES-GUERRERONIS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The eriophyid mite Aceria guerreronis occurs in most coconut growing regions of the world and causes enormous damage to coconut fruits. The concealed environment of the fruit perianth under which the mite resides renders its control extremely difficult. Recent studies suggest that biological control could mitigate the problems caused by this pest. Neoseiulus paspalivorus and Proctolaelaps bickleyi are two of the most frequently found predatory mites associated with A. guerreronis on coconut fruits. Regarding biological control, the former has an advantage in invading the tight areas under the coconut fruit perianth while the latter is more voracious on the pest mites and has a higher reproductive capacity. Based on the idea of the combined use/release of both predators on coconut fruits, we studied their compatibility in spatial niche use and intraguild predation (IGP). Spatial niche use on coconut fruits was examined on artificial arenas mimicking the area under the coconut fruit perianth and the open fruit surface. Both N. paspalivorus and P. bickleyi preferentially resided and oviposited inside the tight artificial chamber. Oviposition rate of P. bickleyi and residence time of N. paspalivorus inside the chamber were reduced in the presence of a conspecific female. Residence of N. paspalivorus inside the chamber was also influenced by the presence of P. bickleyi. Both N. paspalivorus and P. bickleyi preyed upon each other with relatively moderate IGP rates of adult females on larvae but neither species yielded nutritional benefits from IGP in terms of adult survival and oviposition. We discuss the relevance of our findings for a hypothetic combined use of both predators in biological control of A. guerreronis.
Resumo:
Predatory mites identified as Neoseiulus paspalivorus DeLeon (Phytoseiidae) have been considered as agents for classical biological control of the coconut mite, Aceria guerreronis Keifer (Eriophyidae), in Africa and elsewhere. Preliminary identification of geographically distinct populations as belonging to the same species (N. paspalivorus) was based on their morphological similarity. However, laboratory studies recently conducted have shown large differences in feeding behaviors and biological characteristics among individuals collected from three geographic origins: Brazil (South America), Benin and Ghana (West Africa). As morphologically similar specimens do not necessarily belong to the same species, we evaluated under laboratory conditions, reproductive compatibility between the specimens from three geographic locations to ascertain their conspecificity. Morphological measurements were also made to determine whether there is a means of discriminating between them. Inter-population crosses showed complete reproductive isolation between the three geographic populations, but interpopulation discontinuities in morphometric characters were absent. These results indicate that the tested specimens are distinct biological entities despite morphological similarity. Further molecular genetic studies are therefore proposed, including screening for endosymbionts and assessment of genetic differentiation, to determine the cause of reproductive incompatibility and to clarify the taxonomic relationship between those populations.
Resumo:
Aceria guerreronis Keifer (Acari: Eriophyidae) is a major pest of coconut fruits (Cocos nucifera L.) in many countries of the Americas, Africa, and parts of Asia. Considerable attention has been given to studies of biological control agents of A. guerreronis. Proctolaelaps bulbosus Moraes, Reis and Gondim Jr. is a predator recently discovered in association with A. guerreronis. Nothing is known about its biology. The aim of this study was to determine suitable food sources for P. bulbosus, among items commonly found on coconut fruits, including A. guerreronis. Food sources evaluated included the mites A. guerreronis, Steneotarsonemus concavuscutum Lofego and Gondim Jr., and Tyrophagus putrescentiae (Schrank), the fungus Rhizopus aff. stolonifer (Ehrenb.) Vuill and coconut pollen; the mite Tetranychus urticae Koch was also included in the assessments, for being a commonly used prey for mass production and laboratory rearing of predatory mites. Proctolaelaps bulbosus was able to develop up to adulthood when fed A. guerreronis, R. aff. stolonifer and T. putrescentiae. It had the highest population growth rates when feeding on the former (R (o) = 17.5; r (m) = 0.392). These results indicate that A. guerreronis is the most suitable food for P. bulbosus among the possible food sources found on coconut fruits and that P. bulbosus can survive in the absence of eriophyid using R. aff. stolonifer as a food source.
Resumo:
Aceria guerreronis Keifer (Acari: Eriophyidae) is considered a major pest of coconut in many countries in the Americas, Africa and parts of Asia. Neoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) is one of the predatory mites most commonly found in association with A. guerreronis in parts of northeast Brazil. The objective of this work was to study the distribution of A. guerreronis and N. baraki among and within coconut bunches. The hypothesis was tested that A. guerreronis and N. baraki are homogenously distributed over the fruits in a bunch, independent of the fruits` age and position. Five collections of bunches, each corresponding to leaves 12-16 from apex (about 2-6 month-old), were conducted in each of three fields in northeastern Brazil, from February to October, 2007. A total of 1,986 fruits were examined. The number of mites, the percentage of fruits hosting them and the level of damage caused by A. guerreronis were evaluated. The highest density of A. guerreronis was observed on fruits of bunch 4 whereas the highest density of N. baraki was observed on bunch 5. Considering all fruits together, no significant differences were observed between densities of either A. guerreronis or N. baraki among the basal, median and apical thirds of the bunches. In younger bunches, fruits of the apical region tend to have lower densities of both mites than fruits of the basal region. This pattern, in association with a similar pattern for the percentage of fruits hosting N. baraki, suggests that the predator initially reaches the basal bunch region, from where it moves to the apical region. The results of the present study suggest that the pest population reduction in bunches older than bunch 4 could be due to (1) an effect of the predator, (2) reduction of the proportion of undamaged tissues amenable to attack, and/or (3) less favorable characteristics of the fruits to attack by A. guerreronis, as indicated by their increasing lignin content as they get older.
Resumo:
Coconut is an important crop in tropical and subtropical regions. Among the mites that infest coconut palms, Aceria guerreronis Keifer is economically the most important. We conducted surveys throughout the coconut growing areas of Brazil. Samples were taken from attached coconuts, leaflets, fallen coconuts and inflorescences of coconut palms in 112 localities aiming to determine the Occurrence and the distribution of phytophagous mites, particularly A. guerreronis, and associated natural enemies. Aceria guerreronis was the most abundant phytophagous mite followed by Steneotarsonemus concavuscutum Lofego & Gondim Jr. and Steneotarsonemus furcatus De Leon (Tarsonemidae). Infestation by A. guerreronis was recorded in 87% of the visited localities. About 81% of all predatory mites belonged to the family Phytoseiidae, mainly represented by Neoseiulus paspalivorus De Leon, Neoseiulus baraki Athias-Henriot and Amblyseius largoensis Muma; 12% were Ascidae, mainly Proctolaelaps bickleyi Bram, Proctolaelaps sp nov and Lasioseius subterraneus Chant. Neoseiulus paspalivorus and N. baraki were the most abundant predators on attached coconuts. Ascidae were predominant on fallen coconuts, while A. largoensis was predominant on leaflets; no mites were found on branches of inflorescences. Leaflets harboured higher mite diversity than the attached coconuts. Mite diversity was the highest in the state Para and on palms surrounded by seasonal forests and Amazonian rain-forests. Neoseiulus paspalivorus, N. baraki and P. bickleyi were identified as the most promising predators of A. guerreronis. Analyses of the influence of climatic factors revealed that dry ambient conditions favour the establishment of A. guerreronis. Neoseiulus paspalivorus and N. baraki have differing climatic requirements; the former being more abundant in warm and dry areas, the latter prevailing ill moderately tempered and humid areas. We discuss the significance of our findings for natural and biological control of A. guerreronis.
Resumo:
Neoseiulus baraki Athias-Henriot (Acari: Phytoseiidae) has been reported from the Americas, Africa and Asia, often in association with Aceria guerreronis Keifer (Acari: Eriophyidae), one of the most important pests of coconut (Cocos nucifera L.) in diVerent parts of the world. That phytoseiid has been considered one of the most common predators associated with A. guerreronis in Brazil. The objective of this study was to evaluate the feeding preference and the eVect of food items commonly present on coconut fruits and several temperature regimes on the life history of a Brazilian population of N. baraki. Completion of immature development was possible when N. baraki was fed A. guerreronis, Steneotarsonemus concavuscutum Lofego and Gondim Jr., and Tyrophagus putrescentiae (Schrank). Fecundity was highest on T. putrescentiae (39.4 eggs), followed by A. guerreronis (24.8 eggs). In choice tests, irrespective of the food on which N. baraki was reared, a larger number of adults of this predator chose leaf discs containing A. guerreronis than discs containing other food items, demonstrating a preference of the former for the latter as food. Egg to adult thermal developmental time was calculated as 84.2 degree-days, above a threshold of 15.8 degrees C. This lower developmental threshold is higher than previously published for phytoseiid species from higher latitudes. Neoseiulus baraki was shown to have higher biotic potential at 30 degrees C (r(m) 0.29). The results suggest N. baraki to be a promising biological control agent of A. guerreronis, well adapted to survive and develop in areas with relatively high temperatures, where that pest prevails.