3 resultados para EPICUTICULAR WAXES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Camarea is a South-American endemic genus comprising eight species. In the present work n-alkanes from foliar cuticular waxes of 23 specimens, representing seven species of Camarea were analyzed, aiming at establishing interspecific affinities and evaluating the usefulness of n-alkane distribution as species characteristic. The sampling included also specimens of Peixotoa rericulata and Janusia guaronitica (both Malpighiaceae). The results were used to obtain a phenogram indicating chemical affinities between species. The results are in agreement with morphological similarities among some Camarea species. Intraspecific variability was small, suggesting that n-alkane distribution may be useful for species characterization and establishment of links among Camarea species. The results support the recognition of Camarea triphylla as a synonym of Camarea axillaris and are not coherent with a hybrid condition of a population exhibiting morphological characteristics combining Camarea affinis and Camarea hirsuta, suggesting instead that the individuals analyzed belong either to Camarea hirsuta or a close species. Distribution of n-alkanes is inadequate to distinguish among Malpighiaceae genera: P reticulata has n-alkane distribution similar to several Cumarea species. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Evolutionary biologists have long endeavored to document how many species exist on Earth, to understand the processes by which biodiversity waxes and wanes, to document and interpret spatial patterns of biodiversity, and to infer evolutionary relationships. Despite the great potential of this knowledge to improve biodiversity science, conservation, and policy, evolutionary biologists have generally devoted limited attention to these broader implications. Likewise, many workers in biodiversity science have underappreciated the fundamental relevance of evolutionary biology. The aim of this article is to summarize and illustrate some ways in which evolutionary biology is directly relevant We do so in the context of four broad areas: (1) discovering and documenting biodiversity, (2) understanding the causes of diversification, (3) evaluating evolutionary responses to human disturbances, and (4) implications for ecological communities, ecosystems, and humans We also introduce bioGENESIS, a new project within DIVERSITAS launched to explore the potential practical contributions of evolutionary biology In addition to fostering the integration of evolutionary thinking into biodiversity science, bioGENESIS provides practical recommendations to policy makers for incorporating evolutionary perspectives into biodiversity agendas and conservation. We solicit your involvement in developing innovative ways of using evolutionary biology to better comprehend and stem the loss of biodiversity.
Resumo:
Alcantarea (Bromeliaceae) has 26 species that are endemic to eastern Brazil, occurring mainly on gneiss-granitic rock outcrops (`inselbergs`). Alcantarea has great ornamental potential and several species are cultivated in gardens. Limited data is available in the literature regarding the leaf anatomical features of the genus, though it has been shown that it may provide valuable information for characterizing of Bromeliaceae taxa. In the present work, we employed leaf anatomy to better characterize the genus and understand its radiation into harsh environments, such as inselbergs. We also searched for characteristics potentially useful in phylogenetic analyses and in delimiting Alcantarea and Vriesea. The anatomical features of the leaves, observed for various Alcantarea species, are in accordance with the general pattern shown by other Bromeliaceae members. However, some features are notable for their importance for sustaining life on rock outcrops, such as: small epidermal thick-walled cells, uneven sinuous epidermal walls, hypodermis often differentiated into lignified layers with thick-walled cells, aquiferous hypodermis bearing collapsible cells, and the presence of well developed epicuticular stratum. Alcantarea leaves tend to show different shapes in the spongy parenchyma, and have chlorenchymatous palisade parenchyma arranged in more well-defined arches, when compared to Vriesea species from the same habitat.