105 resultados para ENDOTHELIAL-CELL APOPTOSIS

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background and Aims: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Grafts of biological tissues have been used since the 1960s as an alternative to the mechanical heart prostheses. Nowadays, the most consolidated treatment to bovine pericardial (BP) bioprostheses is the crosslinking with glutaraldehyde (GA), although GA may induce calcification in vivo. In previous work, our group demonstrated that electron beam irradiation applied to lyophilized BP in the absence of oxygen promoted crosslinks among collagen fibers of BP tissue. In this work, the incorporation of silk fibroin (SF) and chitosan (CHIT) in the BP not treated with GA was studied. The samples were irradiated and then analyzed for their cytotoxicity and the ability of adhesion and growth of endothelial cells. Initially, all samples showed cytotoxicity. However, after a few washing cycles, the cytotoxicity due to acetic acid and ethanol residues was removed from the biomaterial making it suitable for the biofunctional test. The samples modified with SF/CHIT and electron beam irradiated favored the adhesion and growth of endothelial cells throughout the tissue.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Budlein A has been reported to exert some analgesic and anti-inflammatory properties. In this study, we have evaluated its effect on LPS-induced leukocyte recruitment in vivo and the mechanisms involved in its anti-inflammatory activity. In vivo, intravital videomicroscopy was used to determine the effects of budlein A on LPS-induced leukocyte-endothelial cell interactions in the murine cremasteric microcirculation. In vitro, the effects of budlein A on LPS-induced cytokine, chemokine and nitrites release, T-cell proliferative response as well as cell adhesion molecule expression (CAM) were evaluated. In vivo, intraperitoneal administration of budlein A (2.6 mM/kg) caused a significant reduction of LPS-induced leukocyte rolling flux, adhesion and emigration by 84, 92 and 96% respectively. In vitro, T-cell proliferative response was also affected by budlein A. When murine J774 macrophages were incubated with the sesquiterpene lactone, LPS-induced IL-1 beta, tumor necrosis factor-alpha (TNF-alpha) and keratinocyte-derived chemokine (KC) release were concentration-dependently inhibited. In human umbilical vein endothelial cells (HUVECs), budlein A also reduced the production of TNF-alpha, monocyte chemoattractant protein-1 (MCP-1), IL-8, nitrites and CAM expression elicited by LPS. Budlein A is a potent inhibitor of LPS-induced leukocyte accumulation in vivo. This effect appears to be mediated through inhibition of cytokine and chemokine release and down-regulation of CAM expression. Thus, it has potential therapeutic interest for the control of leukocyte recruitment that occurs in different inflammatory disorders. (C) 2009 Elsevier GrnbH. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We have shown previously that nitric oxide (NO) controls platelet endothelial cell adhesion molecule (PECAM-1) expression on both neutrophils and endothelial cells under physiological conditions. Here, the molecular mechanism by which NO regulates lipopolysaccharide (LPS)-induced endothelial PECAM-1 expression and the role of interleukin (IL)-10 on this control was investigated. For this purpose, N-(G)-nitro-L-arginine methyl ester (L-NAME; 20 mg/kg/day for 14 days dissolved in drinking water) was used to inhibit both constitutive (cNOS) and inducible nitric oxide (iNOS) synthase activities in LPS-stimulated Wistar rats (5 mg/kg, intraperitoneally). This treatment resulted in reduced levels of serum NO. Under this condition, circulating levels of IL-10 was enhanced, secreted mainly by circulating lymphocytes, dependent on transcriptional activation, and endothelial PECAM-1 expression was reduced independently on reduced gene synthesis. The connection between NO, IL-10 and PECAM-1 expression was examined by incubating LPS-stimulated (1 mu g/ml) cultured endothelial cells obtained from naive rats with supernatant of LPS-stimulated lymphocytes, which were obtained from blood of control or L-NAME-treated rats. Supernatant of LPS-stimulated lymphocytes obtained from L-NAME-treated rats, which contained higher levels of IL-10, reduced LPS-induced PECAM-1 expression by endothelial cells, and this reduction was reversed by adding the anti-IL-10 monoclonal antibody. Therefore, an association between NO, IL-10 and PECAM-1 was found and may represent a novel mechanism by which NO controls endothelial cell functions.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Anti-endothelial cells antibodies have been detected in numerous autoimmune and inflammatory diseases, including systemic lupus erythematous, rheumatoid arthritis, vasculitis and sarcoidosis. Anti-endothelial cells antibodies bind to endothelial cell antigens and induce endothelial damage. Their effects on the endothelial cell have been considered responsible, at least in part, by the vascular injury which occurs in these pathological conditions. Lupus (2009) 18, 1233-1238.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Study objective: To compare the effects of ethinylestradiol (EE) and 17 beta-estradiol (E(2)) on nitric oxide (NO) production and protection against oxidative stress in human endothelial cell cultures. Design: Experimental study. Settings: Research laboratory. Material: Human ECV304 endothelial cell cultures. Intervention(s): The NO synthesis was determined by flow cytometry, and oxidative stress was determined by a cell viability assay, after exposure to hydrogen peroxide (H(2)O(2)) and stimulation of endothelial cells with EE at concentrations similar to those of a contraceptive containing 30 mu g EE. Main Outcome Measure(s): The effects of EE were compared with those of E(2) at concentrations similar to those occurring during the follicular phase. Result(s): Ethinylestradiol did not increase NO synthesis and did not protect cells against oxidative stress. The viability of the cells incubated with E(2) in combination with H(2)O(2) was greater than the viability obtained with H(2)O(2) only or with H(2)O(2) in combination with EE. The cells stimulated with E(2) presented a significant increase in NO production compared with control. Conclusion(s): In contrast to the effects of E(2), EE did not protect human ECV304 endothelial cells against oxidative stress and did not increase their production of NO. (Fertil Steril (R) 2010; 94: 1578-82. (C) 2010 by American Society for Reproductive Medicine.)

Relevância:

100.00% 100.00%

Publicador:

Resumo:

To investigate the relationship between NF-kappa B activation and hepatic stellate cell (HSC) apoptosis in hepatosplenic schistosomiasis, hepatic biopsies from patients with Schistosoma mansoni-induced periportal fibrosis, hepatitis C virus-induced cirrhosis, and normal liver were submitted to alpha-smooth muscle actin (alpha-SMA) and NF-kappa B p65 immunohistochemistry, as well as to NF-kappa B Southwestern histochemistry and TUNEL assay. The numbers of alpha-SMA-positive cells and NF-kappa B- and NF-kappa B p65-positive HSC nuclei were reduced in schistosomal fibrosis relative to liver cirrhosis. In addition, increased HSC NF-kappa B p65 and TUNEL labeling was observed in schistosomiasis when compared to cirrhosis. These results suggest a possible relationship between the slight activation of the NF-kappa B complex and the increase of apoptotic HSC number in schistosome-induced fibrosis, taking place to a reduced HSC number in schistosomiasis in relation to liver cirrhosis. Therefore, the NF-kappa B pathway may constitute an important down-regulatory mechanism in the pathogenesis of human schistosomiasis mansoni, although further studies are needed to refine the understanding of this process. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Objective: In this study, we determined the protective effect of isoflavones from Glycine max on human umbilical vein endothelial cell (ECV304) damage induced by hydrogen peroxide (H(2)O(2)) and on nitric oxide (NO) production. Methods: We studied the regulation of NO synthesis in cultured human endothelial cells by phytoestrogens contained in soy extracts in the presence or absence of ICI 182,780 or N(omega)-nitro-L-arginine methyl esther and determined the protective effect of these isoflavones on ECV304 damage induced by H(2)O(2). Results: We show that soy extracts activate NO synthesis in endothelial cells and protect against cell damage. Conclusions: In conclusion, soy isoflavones markedly protect ECV304 cells against H(2)O(2) damage and promote NO synthesizing. Therefore, these isoflavones call potentially act as an NO promoter and as an antioxidant.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Lymphocyte subsets, activation markers and apoptosis were assessed in 20 HIV-exposed noninfected (ENI) children born to HIV-infected women who were or not exposed to antiretroviral (ARV) drugs during pregnancy and early infancy. ENI children and adolescents were aged 6-18 years and they were compared to 25 age-matched healthy non-HIV-exposed children and adolescents (Control). ENI individuals presented lower CD4(+) T cells/mm(3) than Control group (control: 1120.3 vs. ENI: 876.3; t-test, p=0.030). ENI individuals had higher B-cell apoptosis than Control group (Control: 36.6%, ARV exposed: 82.3%, ARV nonexposed: 68.5%; Kruskal-Wallis, p < 0.05), but no statistical difference was noticed between those exposed and not exposed to ARV. Immune activation in CD4(+) T, CD8(+) T and in B cells was comparable in ENI and in Control children and adolescents. Subtle long-term immune alterations might persist among ENI individuals, but the clinical consequences if any are unknown, and these children require continued monitoring.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Background/Objective: Renal ischemia-hypoxia is a leading cause of acute kidney injury (AKI). Ischemia causes extracellular matrix breakdown of the tubular basement membrane. Endostatin (ES) is the C-terminal fragment of collagen XVIII generated by proteolytic cleavage. Recent studies have demonstrated that ES expression is upregulated in ischemic kidneys. The present study aimed to characterize ES from ischemic kidneys. Methods: Ischemic renal failure was induced via 45 min of occlusion of the left renal artery and vein. After the ischemic period, blood was collected. Kidneys were harvested and used for immunohistochemical testing and protein extraction. Three-step purification was used. Soluble and immobilized purified ES were tested in cell viability and adhesion assays. Results: The soluble KES28kDa inhibited endothelial cell proliferation: 25 versus 12.5 mu g (p < 0.05); 12.5 versus 3.15 mu g (p < 0.05). Immobilization of KES28kDa supports endothelial cell survival over the control p = 0.021). Human umbilical vein endothelial cells plated on immobilized KES28kDa showed an increase in membrane ruffles and stress fibers. Conclusion: These data demonstrate the local synthesis of a 28-kDa ES-related fragment following AKI and suggest its role in endothelium survival. Copyright (C) 2010 S. Karger AG, Basel

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Snake venom metalloproteinases (SVMPs) have been extensively studied and their effects associated with the local bleeding observed in human accidents by viper snakes. Representatives of P-I and P-III classes of SVMPs similarly hydrolyze extracellular matrix proteins or coagulation factors while only P-III SVMPs induce significant hemorrhage in experimental models. In this work, the effects of P-I and P-III SVMPs on plasma proteins and cultures of muscle and endothelial cells were compared in order to enlighten the mechanisms involved in venom-induced hemorrhage. To reach this comparison, BnP1 was isolated from B. neuwiedi venom and used as a weakly hemorrhagic P-I SVMPs and jararhagin was used as a model of potently hemorrhagic P-III SVMP. BnP1 was isolated by size exclusion and anion-exchange chromatographies, showing apparent molecular mass of approximately 24kDa and sequence similarity with other members of SVMPs, which allowed its classification as a group P-I SVMP. The comparison of local effects induced by SVMPs showed that BnP1 was devoid of significant myotoxic and hemorrhagic activities and jararhagin presented only hemorrhagic activity. BnP1 and jararhagin were able to hydrolyze fibrinogen and fibrin, although the latter displayed higher activity in both systems. Using HUVEC primary cultures, we observed that BnP1 induced cell detachment and a decrease in the number of viable endothelial cells in levels comparable to those observed by treatment with jararhagin. Moreover, both BnP1 and jararhagin induced apoptosis in HUVECs while only a small increase in LDH supernatant levels was observed after treatment with jararhagin, suggesting that the major mechanism involved in endothelial cell death is apoptosis. Jararhagin and BnP1 induced little effects on C2C12 muscle cell cultures, characterized by a partial detachment 24h after treatment and a mild necrotic effect as evidenced by a small increase in the supernatants LDH levels. Taken together, our data show that P-I and P-III SVMPs presented comparable effects except for the hemorrhagic activity, suggesting that hydrolysis of coagulation factors or damage to endothelial cells are not sufficient for induction of local bleeding. (C) 2007 Elsevier Ltd. All rights reserved.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Bites from the Loxosceles genus (brown spiders) cause severe clinical symptoms, Including dermonecrotic injury, hemorrhage, hemolysis, platelet aggregation and renal failure. Histological findings of dermonecrotic lesions in animals exposed to Loxosceles intermedia venom show numerous vascular alterations Study of the hemorrhagic consequences of the venom in endothelial cells has demonstrated that the degeneration of blood vessels results not only from degradation of the extracellular matrix molecule or massive leukocyte infiltration, but also from a direct and primary activity of the venom on endothelial cells. Exposure of an endothelial cell line in vitro to L. intermedia venom induce morphological alterations, such as cell retraction and disadhesion to the extracellular matrix. The aim of the present study was to investigate the interaction between the venom toxins and the endothelial cell surface and their possible internalization, in order to illuminate the information about the deleterious effect triggered by venom After treating endothelial cells with venom toxins, we observed that the venom Interacts with cell surface. Venom treatment also can cause a reduction of cell surface glycoconjugates When cells were permeabilized, it was possible to verify that some venom toxins were internalized by the endothelial cells The venom internalization involves endocytic vesicles and the venom was detected in the lysosomes. However, no damage to lysosomal integrity was observed, suggesting that the cytotoxic effect evoked by L interned:a venom on endothelial cells is not mediated by venom internalization (C) 2010 Elsevier Ltd. All rights reserved

Relevância:

100.00% 100.00%

Publicador:

Resumo:

It is well known that cancer cells secrete angiogenic factors to recruit and sustain tumor vascular networks. However, little is known about the effect of endothelial cell-secreted factors on the phenotype and behavior of tumor cells. The hypothesis underlying this study is that endothelial cells initiate signaling pathways that enhance tumor cell survival and migration. Here, we observed that soluble mediators from primary human dermal microvascular endothelial cells induce phosphorylation of signal transducer and activator of transcription 3 (STAT3), Akt, and extracellular signal-regulated kinase (ERK) in a panel of head and neck squamous cell carcinoma (HNSCC) cells (OSCC-3, UM-SCC-1, UM-SCC-17B, UM-SCC-74A). Gene expression analysis demonstrated that interleukin-6 (IL-6), interleukin-8 (CXCL8), and epidermal growth factor (EGF) are upregulated in endothelial cells cocultured with HNSCC. Blockade of endothelial cell-derived IL-6, CXCL8, or EGF by gene silencing or neutralizing antibodies inhibited phosphorylation of STAT3, Akt, and ERK in tumor cells, respectively. Notably, activation of STAT3, Akt, and ERK by endothelial cells enhanced migration and inhibited anoikis of tumor cells. We have previously demonstrated that Bcl-2 is upregulated in tumor microvessels in patients with HNSCC. Here, we observed that Bcl-2 signaling induces expression of IL-6, CXCL8, and EGF, providing a mechanism for the upregulation of these cytokines in tumor-associated endothelial cells. This study expands the contribution of endothelial cells to the pathobiology of tumor cells. It unveils a new mechanism in which endothelial cells function as initiators of molecular crosstalks that enhance survival and migration of tumor cells.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Transplantation of pancreatic islets constitutes a promising alternative treatment for type 1 diabetes. However, it is limited by the shortage of organ donors. Previous results from our laboratory have demonstrated beneficial effects of recombinant human prolactin (rhPRL) treatment on beta cell cultures. We therefore investigated the role of rhPRL action in human beta cell survival, focusing on the molecular mechanisms involved in this process. Human pancreatic islets were isolated using an automated method. Islet cultures were pre-treated in the absence or presence of rhPRL and then subjected to serum starvation or cytokine treatment. Beta cells were labelled with Newport green and apoptosis was evaluated using flow cytometry analysis. Levels of BCL2 gene family members were studied by quantitative RT-PCR and western blot. Caspase-8, -9 and -3 activity, as well as nitric oxide production, were evaluated by fluorimetric assays. The proportion of apoptotic beta cells was significantly lowered in the presence of rhPRL under both cell death-induced conditions. We also demonstrated that cytoprotection may involve an increase of BCL2/BAX ratio, as well as inhibition of caspase-8, -9 and -3. Our study provides relevant evidence for a protective effect of lactogens on human beta cell apoptosis. The results also suggest that the improvement of cell survival may involve, at least in part, inhibition of cell death pathways controlled by the BCL2 gene family members. These findings are highly relevant for improvement of the islet isolation procedure and for clinical islet transplantation.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We tested the hypothesis that bone marrow-derived mononuclear cells (BMDMCs) at an early phase of cecal ligation and puncture (CLP)-induced sepsis may have lasting effects on: (1) lung mechanics and histology, (2) the structural remodelling of lung parenchyma, (3) lung, kidney, and liver cell apoptosis, and (4) pro- and anti-inflammatory cytokines and growth factors. At day 1, BMDMC significantly reduced mortality, as well as caspase-3, interleukin (IL)-6 and IL-1 beta vascular endothelial growth factor, platelet-derived growth factor, hepatocyte growth factor, and transforming growth factor-beta, but increased IL-10 mRNA expression in lung tissue in septic mice contributing to endothelium and epithelium alveolar repair and improvement of lung mechanics. BMDMC also prevented the increase of apoptotic cells in lung, liver, and kidney. At day 7, these early functional and morphological effects were preserved or further improved. In conclusion, in the present model of sepsis, the beneficial effects of early administration of BMDMCs on lung and distal organs were preserved, possibly by paracrine mechanisms. (C) 2011 Elsevier B.V. All rights reserved.