82 resultados para ENDOTHELIAL PROGENITOR CELL
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background and Aims. HTLV-I-transformed T cells secrete biologically active forms of vascular endothelial growth factor (VEGF) and basic fibroblast growth factor (b-FGF). In addition, HTLV-I-transformed cells have a high capacity of adhesion to endothelial cells. Methods. We measured the circulating endothelial progenitor cells (EPCs) and mature endothelial cells (MECs) by flow cytometry in 27 HTLV-I carriers in comparison to 30 healthy, age- and gender-matched subjects. All subjects had HTLV-I positivity confirmed by Western blot and/or polymerase chain reaction (PCR). The numbers of different subpopulations of EPCs and MECSs were evaluated by four-color flow cytometry using a panel of monoclonal antibodies. All reactions were done in duplicate to confirm reproducibility of the results. Results. The median age of all 27 HTLV-I carriers enrolled in this study was 45 years (range: 27-65 years); 11(41%) were male and 16 (59%) were female. The median age of the 30 healthy subjects in the control group was 45.5 years (range: 20-63 years); 11 (36.6%) were male and 19 (63.4%) were female. The number of EPCs was significantly higher in HTLV-I carriers (median 0.8288 cells/mu L, range: 0.0920-3.3176 cells/mu L) as compared to control group (median 0.4905 cells/mu L, range: 0.0000-1.5660 cells/mu L) (p = 0.035). In contrast, the median of the MECs in the HTLV-I carriers was 0.6380 cells/mu L (range: 0.0473-5.7618 cells/mu L) and 0.4950 cells/mu L (range: 0.0000-4.0896 cells/mu L) in the control group, with no statistical difference (p = 0.697). Conclusions. We demonstrated that EPCs, but not MECs, are increased in the peripheral blood of HTLV-I carriers. (C) 2011 IMSS. Published by Elsevier Inc.
Resumo:
Background: Culturing otospheres from dissociated organ of Corti is an appropriate starting point aiming at the development of cell therapy for hair cell loss. Although guinea pigs have been widely used as an excellent experimental model for studying the biology of the inner ear, the mouse cochlea has been more suitable for yielding otospheres in vitro. The aim of this study was to compare conditions and outcomes of otosphere suspension cultures from dissociated organ of Corti of either mouse or guinea pig at postnatal day three (P3), and to evaluate the guinea pig as a potential cochlea donor for preclinical cell therapy. Methods: Organs of Corti were surgically isolated from P3 guinea pig or mouse cochlea, dissociated and cultivated under non-adherent conditions. Cultures were maintained in serum-free DMEM:F12 medium, supplemented with epidermal growth factor (EGF) plus either basic fibroblast growth factor (bFGF) or transforming growth factor alpha (TGF alpha). Immunofluorescence assays were conducted for phenotype characterization. Results: The TGF alpha group presented a number of spheres significantly higher than the bFGF group. Although mouse cultures yielded more cells per sphere than guinea pig cultures, sox2 and nestin distributed similarly in otosphere cells from both organisms. We present evidence that otospheres retain properties of inner ear progenitor cells such as self-renewal, proliferation, and differentiation into hair cells or supporting cells. Conclusions: Dissociated guinea pig cochlea produced otospheres in vitro, expressing sox2 and nestin similarly to mouse otospheres. Our data is supporting evidence for the presence of inner ear progenitor cells in the postnatal guinea pig. However, there is limited viability for these cells in neonatal guinea pig cochlea when compared to the differentiation potential observed for the mouse organ of Corti at the same developmental stage.
Resumo:
The longest open reading frame of PKHD1 (polycystic kidney and hepatic disease 1), the autosomal recessive polycystic kidney disease (ARPKD) gene, encodes a single-pass, integral membrane protein named polyductin or fibrocystin. A fusion protein comprising its intracellular C-terminus, FP2, was previously used to raise a polyclonal antiserum shown to detect polyductin in several human tissues, including liver. In the current study, we aimed to investigate by immunohistochemistry the detailed polyductin localization pattern in normal (ductal plate [DP], remodelling ductal plate [RDP], remodelled bile ducts) and abnormal development of the primitive intrahepatic biliary system, known as ductal plate malformation (DPM). This work also included the characterization of polyductin expression profile in various histological forms of neonatal and infantile cholestasis, and in cholangiocellular carcinoma (CCC) and hepatocellular carcinoma (HCC). We detected polyductin expression in the intrahepatic biliary system during the DP and the RDP stages as well as in DPM. No specific staining was found at the stage of remodelled bile ducts. Polyductin was also detected in liver biopsies with neonatal cholestasis, including mainly biliary atresia and neonatal hepatitis with ductular reaction as well as congenital hepatic fibrosis. In addition, polyductin was present in CCC, whereas it was absent in HCC. Polyductin was also co-localized in some DP cells together with oval stem cell markers. These results represent the first systematic study of polyductin expression in human pathologies associated with abnormal development of intrahepatic biliary tree, and support the following conclusions: (i) polyductin expression mirrors developmental properties of the primitive intrahepatic biliary system; (ii) polyductin is re-expressed in pathological conditions associated with DPM and (iii) polyductin might be a potential marker to distinguish CCC from HCC.
Resumo:
We reviewed the data of 307 patients treated with autologous bone marrow transplantation with the aim to identify factors associated with poor hematopoietic stern cell (HSC) mobilization after administration of cyclophosphamide and granulocyte-colony stimulating factor. Success in mobilization was defined when >= 2.0 x 10(6) CD34+ cells/kg weight could be collected with <= 3 leukapheresis procedures. Success was observed in 260 patients (84.7%) and nonsuccess in 47 patients (15.3%). According to the stepwise regression model: diagnosis, chemotherapy load, treatment with mitoxantrone and platelet count before mobilization were found to be independent predictive factors for HSC mobilization. These results could help in the previous recognition of patients at risk for non response to mobilization and allow to plan an alternative protocol for this group of patients. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Incomplete revascularization is associated with worse long-term outcomes. Autologous bone marrow cells (BMC) have recently been tested in patients with severe coronary artery disease. We tested the hypothesis that intramyocardial injection of autologous BMC increases myocardial perfusion in patients undergoing incomplete coronary artery bypass grafting (CABG). Twenty-one patients (19 men), 59 +/- 7 years old, with limiting angina and multivessel coronary artery disease (CAD), not amenable to complete CABG were enrolled. BMC were obtained prior to surgery, and the lymphomonocytic fraction separated by density gradient centrifugation. During surgery, 5 mL containing 2.1 +/- 1.3 x 10(8) BMC (CD34+ = 0.8 +/- 0.3%) were injected in the ischemic non-revascularized myocardium. Myocardial perfusion was assessed by magnetic resonance imaging (MRI) at baseline and 1 month after surgery. The increase in myocardial perfusion was compared between patients with < 50% (group A, n = 11) with that of patients with > 50% (group B, n = 10) of target vessels (stenosis a parts per thousand yenaEuro parts per thousand 70%) successfully bypassed. Injected myocardial segments included the inferior (n = 12), anterior (n = 7), and lateral (n = 2) walls. The number of treated vessels (2.3 +/- 0.8) was significantly smaller than the number of target vessels (4.2 +/- 1.0; P < 0.0001). One month after surgery, cardiac MRI showed a similar reduction (%) in the ischemic score of patients in group A (72.5 +/- 3.2), compared to patients in group B (78.1 +/- 3.2; P = .80). Intramyocardial injection of autologous BMC may help increase myocardial perfusion in patients undergoing incomplete CABG, even in those with fewer target vessels successfully treated. This strategy may be an adjunctive therapy for patients suffering from a more advanced (diffuse) CAD not amenable for complete direct revascularization.
Resumo:
Background: Prostate tumor heterogeneity is a major factor in disease management. Heterogeneity could be due to multiple cancer cell types with distinct gene expression. Of clinical importance is the so-called cancer stem cell type. Cell type-specific transcriptomes are used to examine lineage relationship among cancer cell types and their expression similarity to normal cell types including stem/progenitor cells. Methods: Transcriptomes were determined by Affymetrix DNA array analysis for the following cell types. Putative prostate progenitor cell populations were characterized and isolated by expression of the membrane transporter ABCG2. Stem cells were represented by embryonic stem and embryonal carcinoma cells. The cancer cell types were Gleason pattern 3 (glandular histomorphology) and pattern 4 (aglandular) sorted from primary tumors, cultured prostate cancer cell lines originally established from metastatic lesions, xenografts LuCaP 35 (adenocarcinoma phenotype) and LuCaP 49 (neuroendocrine/small cell carcinoma) grown in mice. No detectable gene expression differences were detected among serial passages of the LuCaP xenografts. Results: Based on transcriptomes, the different cancer cell types could be clustered into a luminal-like grouping and a non-luminal-like (also not basal-like) grouping. The non-luminal-like types showed expression more similar to that of stem/progenitor cells than the luminal-like types. However, none showed expression of stem cell genes known to maintain stemness. Conclusions: Non-luminal-like types are all representatives of aggressive disease, and this could be attributed to the similarity in overall gene expression to stem and progenitor cell types.
Resumo:
Aims: e-HEALING is a worldwide, internet-based registry designed to capture post marketing clinical data on the use of the Genous (TM) EPC capturing R stent (TM). Rapid restoration of a healthy endothelial layer after stent placement by capturing circulating endothelial progenitor cells may reduce both stent thrombosis (ST) and in-stent-restenosis. Methods and results: We planned a 5,000 patient registry with >= 1 lesion suitable for stenting. The 12-month primary outcome was target vessel failure (TVF), defined as target vessel-related cardiac death or myocardial infarction (MI) and target vessel revascularisation. Secondary outcomes were the composite of cardiac death, MI or target lesion revascularisation (TLR), and individual outcomes including ST. A total of 4,939 patients received >= 1 Genous stent between 2005 and 2007. Baseline characteristics showed a median age of 63 years, 79% males, 25% diabetics, and 37% with prior MI. A total of 49% of lesions treated were ACC/AHA type B2 or C; 1.1 stents per lesion were used. At 12 months, TVF occurred in 8.4% and the composite of cardiac death, MI or TLR in 7.9%. Twelve-month TLR and ST were 5.7% and 1.1%, respectively. Conclusions: Coronary stenting with the Genous results in good clinical outcomes, and low incidences of repeat revascularisation and ST.
Resumo:
Background: A previous study associated CD34(+) levels with NYHA functional class in heart failure patients. The aim of this study was to correlate CD34(+) levels to exercise capacity, functional class, quality of life and norepinephrine in heart failure patients. Methods: Twenty three sedentary patients (52 +/- 7 years, 78% male) answered the Minnesota Living with Heart Failure Questionnaire and rested for 20 minutes before an investigator collect a blood sample. After this, patients performed a cardiopulmonary exercise test to determine the heart rate at anaerobic and ventilatory threshold and oxygen consumption at peak effort, at anaerobic and ventilatory threshold. One other blood sample was collected during the peak effort to investigate the norepinephrine and CD34(+) levels. Results: Rest percentage of CD34(+) did not show correlation with: left ventricle ejection fraction (r = 0.03, p = 0.888), peakVO(2) (r = 0.32, p = 0.13), VO(2) at anaerobic threshold (VO(2)AT) (r = 0.03, p = 0.86), VO(2) at ventilatory threshold (VO(2)VT) (r = 0.36, p = 0.08), NYHA functional class (r = -0.2, p = 0.35), quality of life (Minnesota) (r = -0.17, p = 0.42). CD34(+) did not show correlation, either, with: peak VO(2) (r = 0.38, p = 0.06), VO(2)AT (r = 0.09, p = 0.65), VO(2)VT (r = 0.43, p = 0.4), NYHA functional class (r = -0.13, p = 0.54), quality of life (r = 0.00, p = 0.99). Conclusions: CD34(+) levels did not correlate with exercise capacity, functional class, quality of life and norepinephrine. Percentage of CD34(+) levels did not increase during the cardiopulmonary exercise test in heart failure patients. (Cardiol J 2009; 16, 5: 426-431)
Resumo:
Background: Human postnatal stem cells have been identified in periodontal ligaments (PDLs). In this study, the in vitro biologic properties of CD105(+) enriched cell subsets from PDLs harvested from deciduous (DePDL) and permanent (PePDL) teeth are comparatively assessed. Methods: PDL tissue was obtained from 12 teeth (six primary and six permanent) from which CD105(+) CD34(-) CD45(-) cells were isolated by magnetic cell sorting. To identify and quantitatively compare the stem cell markers, DePDL and PePDL cells were assessed for CD166 surface antigen expression by flow cytometry, real-time polymerase chain reaction, and immunostaining for Stro-1 and Oct-4, osteogenic and adipogenic differentiation, and proliferation rate by trypan blue method. Results: Magnetic cell sorting isolated cell populations containing 23.87% (+/- 11.98%) and 11.68% (+/- 6.27%) of CD105(+) expressing cells from PePDL and DePDL, respectively. Flow cytometric analysis demonstrated a higher proportion of CD105(+) cells coexpressing CD166 surface antigen in PePDL, whereas immunostaining and real-time polymerase chain reaction analysis demonstrated that both cell subsets expressed Stro-1 and Oct-4. DePDL-CD105(+) subsets were more proliferative compared to PePDL subsets, and both cell populations showed multipotential capabilities to differentiate in vitro to osteoblast/cementoblast- and adipocyte-like cells. However, a higher expression of adipogenic-related genes was observed in DePDL cells, whereas PePDL-CD105(+) cell subset presented a more homogeneous osteoblast/cementoblast response. Conclusion: These findings demonstrate that highly purified mesenchymal progenitor cell subsets can be obtained from the PDLs of both deciduous and permanent teeth, and further indicate phenotype dissimilarities that may have an impact on their clinical applications. J Periodontol 2010;81:1207-1215.
Resumo:
Heart regeneration after myocardial infarction (MI) can occur after cell therapy, but the mechanisms, cell types and delivery methods responsible for this improvement are still under investigation. In the present study, we evaluated the impact of systemic delivery of bone marrow cells (BMC) and cultivated mesenchymal stem cells (MSC) on cardiac morphology, function and mortality in spontaneously hypertensive rats (SHR) submitted to coronary occlusion. Female syngeneic adult SHR, submitted or not (control group; C) to MI, were treated with intravenous injection of MSC (MI + MSC) or BMC (MI + BM) from male rats and evaluated after 1, 15 and 30 days by echocardiography. Systolic blood pressure (SBP), functional capacity, histology, mortality rate and polymerase chain reaction for the Y chromosome were also analysed. Myocardial infarction induced a decrease in SBP and BMC, but not MSC, prevented this decrease. An improvement in functional capacity and ejection fraction (38 +/- 4, 39 +/- 3 and 58 +/- 2% for MI, MI + MSC and MI + BM, respectively; P < 0.05), as well as a reduction of the left ventricle infarcted area, were observed in rats from the MI + BM group compared with the other three groups. Treated animals had a significantly reduced lesion tissue score. The mortality rate in the C, MI + BM, MI + MSC and MI groups was 0, 0, 16.7 and 44.4%, respectively (P < 0.05 for the MI + MSC and MI groups compared with the C and MI + BM groups). The results of the present study suggest that systemic administration of BMC can improve left ventricular function, functional capacity and, consequently, reduce mortality in an animal model of MI associated with hypertension. We speculate that the cells transiently home to the myocardium, releasing paracrine factors that recruit host cells to repair the lesion.
Resumo:
Although there is accumulated evidence of a role for Notch in the developing lung, it is still unclear how disruption of Notch signaling affects lung progenitor cell fate and differentiation events in the airway epithelium. To address this issue, we inactivated Notch signaling conditionally in the endoderm using a Shh-Cre deleter mouse line and mice carrying floxed alleles of the Pofut1 gene, which encodes an O-fucosyltransferase essential for Notch-ligand binding. We also took the same conditional approach to inactivate expression of Rbpjk, which encodes the transcriptional effector of canonical Notch signaling. Strikingly, these mutants showed an almost identical lung phenotype characterized by an absence of secretory Clara cells without evidence of cell death, and showed airways populated essentially by ciliated cells, with an increase in neuroendocrine cells. This phenotype could be further replicated in cultured wild-type lungs by disrupting Notch signaling with a gamma-secretase inhibitor. Our data suggest that Notch acts when commitment to a ciliated or non-ciliated cell fate occurs in proximal progenitors, silencing the ciliated program in the cells that will continue to expand and differentiate into secretory cells. This mechanism may be crucial to define the balance of differentiated cell profiles in different generations of the developing airways. It might also be relevant to mediate the metaplastic changes in the respiratory epithelium that occur in pathological conditions, such as asthma and chronic obstructive pulmonary disease.
Resumo:
Objectives: We compared 12-month outcomes, regarding ischemic events, repeat intervention, and ST, between diabetic and nondiabetic patients treated with the Genous (TM) EPC capturing R stent (TM) during routine nonurgent percutaneous coronary intervention (PCI) using data from the multicenter, prospective worldwide e-HEALING registry. Background: Diabetic patients have an increased risk for restenosis and stent thrombosis (ST). Methods: In the 4,996 patient e-HEALING registry, 273 were insulin requiring diabetics (IRD), 963 were non-IRD (NIRD), and 3,703 were nondiabetics. The 12-month primary outcome was target vessel failure (TVF), defined as target vessel-related cardiac death or myocardial infarction (MI) and target vessel revascularization. Secondary outcomes were the composite of cardiac death, MI or target lesion revascularization (TLR), and individual outcomes including ST. Cumulative event rates were estimated with the Kaplan-Meier method and compared with a log-rank test. Results: TVF rates were respectively 13.4% in IRD, 9.0% in NIRD, and 7.9% in nondiabetics (P < 0.01). This was mainly driven by a higher mortality hazard in IRD (P < 0.001) and NIRD (P = 0.07), compared with nondiabetics. TLR rates were comparable in NIRD and nondiabetics, but significantly higher in IRD (P = 0.04). No difference was observed in ST. Conclusion: The 1-year results of the Genous stent in a real-world population of diabetics show higher TVF rates in diabetics compared with nondiabetics, mainly driven by a higher mortality hazard. IRD is associated with a significant higher TLR hazard. Definite or probable ST in all diabetic patients was comparable with nondiabetics. (J Interven Cardiol 2011;24:285-294)
Resumo:
Resveratrol is a stilbene compound found in grapes and other sources. In this study we examined the effects of trans-resveratrol (4.38-438 mu M/implant) in the vasculogenesis of yolk-sac membranes and its capacity to improve chick embryo growth. High concentrations of the stilbene (43.8-438 mu M) significantly inhibited early vessel formation, decreasing the percentage vitelline vessels of 3.5-day embryos by 50% compared to the control. In addition, basic fibroblast growth factor-stimulated vasculogenesis (140% of vessels as compared to control) was partially reversed by t-resveratrol (35% of inhibition) and treatments with cyclooxygenase inhibitors (acetylsalicylic acid and indomethacin) as well a protein-kinase C (PKC) activator (phorbol-12,13-dibutyrate) decreased the vessel number to 60%, 50%, and 44%, respectively. Treatments with t-resveratrol (4.38-43.8 mu M/implant) significantly increased the body length of embryos incubated in vitro uncoupled from any impairment in the body shape or detectable embryotoxic effect. We suggest that the antivasculogenic activity and the enhancement in embryonic growth promoted by non acute treatments with t-resveratrol were, at least in part, due to PKC inhibition. We suggest that t-resveratrol can be usable not only as a reliable functional nutriment, but also is useful for the development of prophylactic and/or therapeutic agents for treatment of angiogenic-degenerative diseases.
Resumo:
Aim: To investigate the effects of swimming training on the renin-angiotensin system (RAS) during the development of hypertensive disease. Main methods: Male spontaneously hypertensive rats (SHR) were randomized into: sedentary young (SY), trained young (TV), sedentary adult (SA), and trained adult (TA) groups. Swimming was performed 5 times/wk/8wks. Key findings: Trained young and adult rats showed both decreased systolic and mean blood pressure, and bradycardia after the training protocol. The left ventricular hypertrophy (LVH) was observed only in the TA group (12.7%), but there was no increase on the collagen volume fraction. Regarding the components of the RAS, TV showed lower activity and gene expression of angiotensinogen (AGT) compared to SY. The TA group showed lower activity of circulatory RAS components, such as decreased serum ACE activity and plasma renin activity compared to SA. However, depending on the age, although there were marked differences in the modulation of the RAS by training, both trained groups showed a reduction in circulating angiotensin II levels which may explain the lower blood pressure in both groups after swimming training. Significance: Swimming training regulates the RAS differently in adult and young SHR rats. Decreased local cardiac RAS may have prevented the LVH exercise-induced in the TV group. Both groups decreased serum angiotensin II content, which may, at least in part, contribute to the lowering blood pressure effect of exercise training. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Background and Aims: Schistosomiasis is an intravascular parasitic disease associated with inflammation. Endothelial cells control leukocyte transmigration and vascular permeability being modulated by pro-inflammatory mediators. Recent data have shown that endothelial cells primed in vivo in the course of a disease keep the information in culture. Herein, we evaluated the impact of schistosomiasis on endothelial cell-regulated events in vivo and in vitro. Methodology and Principal Findings: The experimental groups consisted of Schistosoma mansoni-infected and age-matched control mice. In vivo infection caused a marked influx of leukocytes and an increased protein leakage in the peritoneal cavity, characterizing an inflamed vascular and cellular profile. In vitro leukocyte-mesenteric endothelial cell adhesion was higher in cultured cells from infected mice as compared to controls, either in the basal condition or after treatment with the pro-inflammatory cytokine tumor necrosis factor (TNF). Nitric oxide (NO) donation reduced leukocyte adhesion to endothelial cells from control and infected groups; however, in the later group the effect was more pronounced, probably due to a reduced NO production. Inhibition of control endothelial NO synthase (eNOS) increased leukocyte adhesion to a level similar to the one observed in the infected group. Besides, the adhesion of control leukocytes to endothelial cells from infected animals is similar to the result of infected animals, confirming that schistosomiasis alters endothelial cells function. Furthermore, NO production as well as the expression of eNOS were reduced in cultured endothelial cells from infected animals. On the other hand, the expression of its repressor protein, namely caveolin-1, was similar in both control and infected groups. Conclusion/Significance: Schistosomiasis increases vascular permeability and endothelial cell-leukocyte interaction in vivo and in vitro. These effects are partially explained by a reduced eNOS expression. In addition, our data show that the disease primes endothelial cells in vivo, which keep the acquired phenotype in culture.