17 resultados para EMBRYO IMPLANTATION
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The incidence of melanoma is increasing worldwide. It is one of the leading cancers in pregnancy and the most common malignancy to metastasize to placenta and fetus. There are no publications about experimental models of melanoma and pregnancy. We propose a new experimental murine model to study the effects of melanoma on pregnancy and its metastatic process. We tested several doses of melanoma cells until we arrived at the optimal dose, which produced tumor growth and allowed animal survival to the end of pregnancy. Two control groups were used: control (C) and stress control (SC) and three different routes of inoculation: intravenous (IV), intraperitoneal (IP) and subcutaneous (SC). All the fetuses and placentas were examined macroscopically and microscopically. The results suggest that melanoma is a risk factor for intrauterine growth restriction but does not affect placental weight. When inoculated by the SC route, the tumor grew only in the site of implantation. The IP route produced peritoneal tumoral growth and also ovarian and uterine metastases in 60% of the cases. The IV route produced pulmonary tumors. No placental or fetal metastases were obtained, regardless of the inoculation route. The injection of melanoma cells by any route did not increase the rate of fetal resorptions. Surprisingly, animals in the IV groups had no resorptions and a significantly higher number of fetuses. This finding may indicate that tumoral factors released in the host organism to favor tumor survival may also have a pro-gestational action and consequently improve the reproductive performance of these animals.
Resumo:
Although not belonging to the class of professional phagocytes, in many species trophoblast cells exhibit intense phagocytic activity. The complete range of physiological functions of trophoblast phagocytosis has not yet been fully characterized. Close association between the trophoblast and nutrition was determined many years ago. Hubrecht (1889) when proposing for the first time the name trophoblast to the external layer of the blastocyst, directly established the nutritive significance of this embryonic layer. Indeed, histotrophic phagocytosis, i.e. the internalization of maternal cells and secreted materials, is considered an important function of the trophoblast before the completion of the placenta. Recently, however, unexpected characteristics of the trophoblast have significantly enhanced our understanding of this process. Roles in acquisition of space for embryo development, in tissue remodeling during implantation and placentation and in defense mechanisms are highlighting how this cellular activity may be relevant for the maternal-fetal relationship beyond its nutritional function.
Resumo:
A survey of existing data suggests that trophoblast cells produce factors involved in extracellular matrix degradation. In this study, we correlated the expression of cathepsins D and B in the murine ectoplacental cone with the ultrastructural progress of decidual invasion by trophoblast cells. Both proteases were immunolocalized at implantation sites in lysosome-endosome-like compartments of trophoblast giant cells. Cathepsin D, but not cathepsin B, was also detected ultrastructurally in extracellular compartments surrounded by processes of the invading trophoblast containing extracellular matrix components and endometrial cell debris. The expression of cathepsins D and B by trophoblast cells was confirmed by RT-PCR in ectoplacental cones isolated from implantation chambers at gestation day 7.5. Our data addressed a positive relationship between the expression and presence of cathepsin D at the extracellular compartment of the maternal-fetal interface and the invasiveness of the trophoblast during the postimplantation period, suggesting a participation of invading trophoblast cells in the cathepsin D release. Such findings indicate that mouse trophoblast cells might exhibit a proteolytic ability to partake in the decidual invasion process at the maternal-fetal interface. Copyright (C) 2010 S. Karger AG, Basel
Resumo:
During embryo implantation, invasive trophoblast cells mediate embryo invasion into the decidualized stroma, forming a rich network of lacunae that connect the embryonic tissues to the maternal blood vessels. Placentation is probably guided by the composition and organization of the endometrial extracellular matrix. Certain pathological conditions that occur during pregnancy, including diabetes, have been linked to abnormal placental morphology and consequent fetal morbidity. We used immunoperoxidase techniques to identify members of the collagen, proteoglycan and glycoprotein families in the various compartments of the rat placenta and to determine whether experimentally induced diabetes affects placental morphology and alters the distribution of these molecules during pregnancy. Single injections of alloxan (40 mg kg(-1) i.v.) were used to induce diabetes on day 2 of pregnancy in Wistar rats. Placentas were collected on days 14, 17, and 20. Type I and III collagen, as well as the proteoglycans decorin and biglycan, were found to be distributed throughout the placentas of control and diabetic rats. In both groups, laminin expression decreased at the end of pregnancy. In contrast, fibronectin was detected in the labyrinth region of diabetic rats at all gestational stages studied, whereas it was detected only at term pregnancy in the placentas of control rats. These results show for the first time that some extracellular matrix molecules are modulated during placental development. However, as diabetic rats presented increased fibronectin deposition exclusively in the labyrinth region, we speculate that diabetes alters the microenvironment at the maternal-fetal interface, leading to developmental abnormalities in the offspring.
Resumo:
In the pregnant mouse uterus, small leucine-rich proteoglycans (SLRPs) are drastically remodeled within a few hours after fertilization, suggesting that ovarian hormone levels modulate their synthesis and degradation. In this study, we followed by immunoperoxidase approach, the presence of four members of the SLRP family (decorin, lumican, biglycan, and fibromodulin) in the uterine tissues along the estrous cycle of the mouse. All molecules except fibromodulin, which predominates in the myometrium, showed a striking modulation in their distribution in the endometrial stroma, following the rise in the level of estrogen. Moreover, notable differences in the distribution of SLRPs were observed between superficial and deep stroma, as well as between the internal and external layers of the myometrium. Only biglycan and fibromodulin were expressed in the luminal and glandular epithelia. All four SLRPs were found in cytoplasmic granules of mononucleated cells. The pattern of distribution of the immunoreaction for these molecules in the uterine tissues was found to be estrous cycle-stage dependent, suggesting that these molecules undergo ovarian hormonal control and probably participate in the preparation of the uterus for decidualization and embryo implantation. In addition, this and previous results from our laboratory suggest the existence of two subpopulations of endometrial fibroblasts that may be related to the centrifugal development of the decidua. Anat Rec, 292:138-153, 2009. (c) 2008 Wiley-Liss, Inc.
Resumo:
P>Aim To evaluate the kinetics of the inflammatory tissue response to three root canal sealers using a physicochemical method for quantification of the enhanced vascular permeability and histopathological analysis. Methodology Twenty-eight male Wistar rats randomly assigned to four groups according to the evaluation periods (1, 3, 7 and 14 days) were used to assess the vascular permeability and histopathological reaction to RoekoSeal, AH Plus and Sealapex (new formulation) sealers, using saline and Chloropercha as negative and positive controls, respectively. Seven rats were sacrificed per period. The biocompatibility of the sealers was evaluated spectrophotometrically and histopathologically. Results At day 14, Sealapex produced significantly more inflammatory exudate than AH Plus and RoekoSeal (P < 0.05); however, there was no significant difference between AH Plus and RoekoSeal (P > 0.05). Sealapex (new formulation) was the most irritating sealer, producing severe inflammation with the presence of multinucleated giant cells. RoekoSeal was the most biocompatible sealer, producing the least amount of inflammatory exudate. Conclusions RoekoSeal root canal sealer was biocompatible when implanted in connective tissue.
Resumo:
Background: Titanium (Ti) is widely proven to enhance bone contact and growth on its surface. It is expected that bone defects could benefit from Ti to promote healing and to increase strength of the implanted area. Purpose: The present study aimed at comparing the potential of porous Ti sponge rods with synthetic hydroxyapatite (HA) for the healing of bone defects in a canine model. Material and Methods: Six mongrel dogs were submitted to three trephined osteotomies of 6.0 x 4.0 mm in one humerus and after 2 months another three osteotomies were performed in the contralateral humerus. A total of 36 defects were randomly filled either with Ti foam, particulate HA, or coagulum (control). The six animals were killed 4 months after the first surgery for histological and histometrical analysis. Results: The Ti-foam surface was frequently found in intimate contact with new bone especially at the defect walls. Control sites showed higher amounts of newly formed bone at 2 months - Ti (p = 0.000) and HA (p = 0.009) - and 4 months when compared with Ti (p = 0.001). Differently from HA, the Ti foam was densely distributed across the defect area which rendered less space for bone growth in the latter`s sites. The use of Ti foams or HA resulted in similar amounts of bone formation in both time intervals. Nevertheless, the presence of a Ti-foam rod preserved defect`s marginal bone height as compared with control groups. Also, the Ti-foam group showed a more mature bone pattern at 4 months than HA sites. Conclusion: The Ti foam exhibited good biocompatibility, and its application resulted in improved maintenance of bone height compared with control sites. The Ti foam in a rod design exhibited bone ingrowth properties suitable for further exploration in other experimental situations.
Resumo:
In spite of numerous, substantial advances in equine reproduction, many stages of embryonic and fetal morphological development are poorly understood, with no apparent single source of comprehensive information. Hence, the objective of the present study was to provide a complete macroscopic and microscopic description of the equine embryo/fetus at various gestational ages. Thirty-four embryos/fetuses were aged based on their crown rump length (CRL), and submitted to macroscopic description, biometry, light and scanning microscopy, as well as the alizarin technique. All observed developmental changes were chronologically ordered and described. As examples of the main observed features, an accentuated cervical curvature was observed upon macroscopic examination in all specimens. In the nervous system, the encephalic fourth ventricle and the encephalic vesicles forebrain, midbrain, and hindbrain, were visualized from Day 19 (ovulation = Day 0). The thoracic and pelvic limbs were also visualized; their extremities gave rise to the hoof during development from Day 27. Development of other structures such as pigmented optical vesicle, liver, tail, cardiac area, lungs, and dermal vascularization started on Days 25, 25, 19, 19, 34, and 35, respectively. Light and scanning microscopy facilitated detailed examinations of several organs, e.g., heart, kidneys, lungs, and intestine, whereas the alizarin technique enabled visualization of ossification. Observations in this study contributed to the knowledge regarding equine embryogenesis, and included much detailed data from many specimens collected over a long developmental interval. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
The study is based on 141 pregnant Bos indicus cows, from days 20 to 70 post-insemination. First, special attention was given to the macroscopically observable phenomena of attachment of the conceptus to the uterus, i.e. the implantation, from about days 20 to 30 post-insemination up to day 70, and placentome development by growth, vascularization and increase in the number of cotyledons opposite to the endometrial caruncles. Secondly, as for the conceptuses, semiquantitative, statistical analyses were performed of the lengths of chorio-allantois, amnion and yolk sac; and the different parts of the centre and two extremes of the yolk sacs were also analysed. Thirdly, the embryos/foetuses corresponding to their membranes were measured by their greatest length and by weight, and described by the appearance of external developmental phenomena during the investigated period like neurulation, somites, branchial arcs, brain vesicles, limb buds, C-form, pigmented eye and facial grooves. In conclusion, all the data collected in this study from days 20 to 70 of bovine pregnancy were compared extensively with corresponding data of the literature. This resulted in an `embryo/foetal age-scale`, which has extended the data in the literature by covering the first 8 to 70 days of pregnancy. This age-scale of early bovine intrauterine development provides model for studies, even when using slaughtered cows without distinct knowledge of insemination or fertilization time, through macroscopic techniques. This distinctly facilitates research into the cow, which is now being widely used as `an experimental animal` for testing new techniques of reproduction like in vitro fertilization, embryo transfer and cloning.
Resumo:
Methods used for lipid analysis in embryos and oocytes usually involve selective lipid extraction from a pool of many samples followed by chemical manipulation, separation and characterization of individual components by chromatographic techniques. Herein we report direct analysis by matrix-assisted laser desorption/ionization mass spectrometry (MALDI-MS) of single and intact embryos or oocytes from various species. Biological samples were simply moisturized with the matrix solution and characteristic lipid ( represented by phosphatidylcholines, sphingomyelins and triacylglycerols) profiles were obtained via MALDI-MS. As representative examples, human, bovine, sheep and fish oocytes, as well as bovine and insect embryos were analyzed. MALDI-MS is shown to be capable of providing characteristic lipid profiles of gametes and embryos and also to respond to modifications due to developmental stages and in vitro culture conditions of bovine embryos. Investigation in developmental biology of the biological roles of structural and reserve lipids in embryos and oocytes should therefore benefit from these rapid MALDI-MS profiles from single and intact species.-Ferreira, C. R., S. A. Saraiva, R. R. Catharino, J. S. Garcia, F. C. Gozzo, G. B. Sanvido, L. F. A. Santos, E. G. Lo Turco, J. H. F. Pontes, A. C. Basso, R. P. Bertolla, R. Sartori, M. M. Guardieiro, F. Perecin, F. V. Meirelles, J. R. Sangalli, and M. N. Eberlin. Single embryo and oocyte lipid fingerprinting by mass spectrometry. J. Lipid Res. 2010. 51: 1218-1227.
Resumo:
This study investigated the effect of human-animal interaction (HAI) and the stress response on the quality of embryo production in superovulated Nelore (Bos indicus) cattle, under tropical conditions. Thirty-two females underwent a superovulation protocol for 5 days. Cortisol concentrations were determined in blood plasma collected on days 0, 4, and 5. Artificial insemination was performed on days 4 and 5, and nonsurgical embryo flushing on day 11. Embryo production and viability were determined. Human stimulation, animal behaviors, accidents, and handling time were recorded to assess HAI. Cattle age was negatively correlated with accidents, frequency of aversive behaviors, and negative stimuli by stockperson during transit through corral compartments to receive superovulation treatments. The factor analysis revealed two distinct groups. The first group was called stressed and had higher cortisol concentration than the nonstressed group, 16.0 +/- 2.1 and 12.5 +/- 1.0 ng/mL, respectively. Comparisons between these groups showed that the frequency of voice emissions by the stockperson and the number of accidents were higher in the stressed group, and also, the mean handling time was longer in the stressed group than for the nonstressed. As a result, viability rate of the embryos was 19% lower in the stressed group (P < 0.05). This indicates that intensive negative HAI is likely related to stress, which affects embryo production in a superovulation program.
Influence of nitric oxide during maturation on bovine oocyte meiosis and embryo development in vitro
Resumo:
The effect of s-nitroso-N-acetyl-1,1-penicillamine (SNAP, a nitric oxide donor) during in vitro maturation (IVM) on nuclear maturation and embryo development was investigated. The effect of increasing nitric oxide (NO) during prematuration or maturation, or both, on embryo development was also assessed. 10(-3) M SNAP nearly blocked oocytes reaching metaphase II (MII) (7%, P < 0.05) while 10(-5) M SNAP showed intermediate proportions (55%). For 10(-7) M SNAP and controls (without SNAP), MII percentages were similar (72% for both, P > 0.05), but superior to the other treatment groups (P < 0.05). Blastocyst development, however, was not affected (38% for all treatments, P < 0.05). TUNEL-positive cells in hatched blastocysts (Day 9) increased when IVM included 10(-5) M SNAP (8 v. 3 to 4 cells in the other treatments, P > 0.05), without affecting total cell numbers (240 to 291 cells, P > 0.05). When oocytes were prematured followed by IVM with or without 10(-7) M SNAP, during either culture period or both, blastocyst development was similar (26 to 40%, P > 0.05). When SNAP was included during both prematuration and IVM, the proportion of Day 9 hatched embryos increased (28% v. 14 to 19% in the other treatments, P < 0.05). Apoptotic cells, however, increased when SNAP was included (6 to 10 cells) in comparison to prematuration and maturation without SNAP (3 cells, P < 0.05). NO may be involved in meiotic progression and apoptosis during embryo development.
Resumo:
Although cloning of mammals has been achieved successfully, the percentage of live offspring is very low because of reduced fetal size and fewer implantation sites. Recent studies have attributed such pathological conditions to abnormal reprogramming of the donor cell used for cloning. The inability of the oocyte to fully restore the differentiated status of a somatic cell to its pluripotent and undifferentiated state is normally evidenced by aberrant DNA methylation patterns established throughout the genome during development to blastocyst. These aberrant methylation patterns are associated with abnormal expression of imprinted genes, which among other genes are essential for normal embryo development and gestation. We hypothesized that embryo loss and low implantation rates in cattle derived by somatic cell nuclear transfer (SCNT) are caused by abnormal epigenetic reprogramming of imprinted genes. To verify our hypothesis, we analyzed the parental expression and the differentially methylated domain (DMD) methylation status of the H19 gene. Using a parental-specific analysis, we confirmed for the first time that H19 biallelic expression is tightly associated with a severe demethylation of the paternal H19 DMD in SCNT embryos, suggesting that these epigenetic anomalies to the H19 locus could be directly responsible for the reduced size and low implantation rates of cloned embryos in cattle.
Resumo:
The extensive replication of mitochondria during oogenesis and the wide variability in mitochondrial DNA ( mtDNA) copy numbers present in fully grown oocytes indicate that mtDNA amount may play an important role during early embryogenesis. Using bovine oocytes derived from follicles of different sizes to study the influence of mtDNA content on development, we showed that oocytes obtained from small follicles, known to be less competent in developing into blastocysts, contain less mtDNA than those originating from larger follicles. However, because of the high variability in copy number, a more accurate approach was examined in which parthenogenetic one-cell embryos were biopsied to measure their mtDNA content and then cultured to assess development capacity. Contrasting with previous findings, mtDNA copy number in biopsies was not different between competent and incompetent embryos, indicating that mtDNA content is not related to early developmental competence. To further examine the importance of mtDNA on development, one-cell embryos were partially depleted of their mtDNA (64% +/- 4.1% less) by centrifugation followed by the removal of the mitochondrial-enriched cytoplasmic fraction. Surprisingly, depleted embryos developed normally into blastocysts, which contained mtDNA copy numbers similar to nonmanipulated controls. Development in depleted embryos was accompanied by an increase in the expression of genes (TFAM and NRF1) controlling mtDNA replication and transcription, indicating an intrinsic ability to restore the content of mtDNA at the blastocyst stage. Therefore, we concluded that competent bovine embryos are able to regulate their mtDNA content at the blastocyst stage regardless of the copy numbers accumulated during oogenesis.
Resumo:
The Tiete River and its tributary Pinheiros River receive a highly complex organic and inorganic pollutants load from sanitary sewage and industrial sources, as well as agricultural and agroindustrial activities. The aim of the present study was to evaluate the embryotoxic and teratogenic effects of sediments from selected locations in the Tiete River Basin by means of the sediment contact embryo toxicity assay with Danio rerio, in order to provide a comprehensive and realistic insight into the bioavailable hazard potential of these sediment samples. Lethal and sub-lethal effects were recorded, and high embryo toxicity could be found in the samples not only in the vicinity of the megacity Sao Paulo (Billings reservoir and Pinheiros River samples), but also downstream (in the reservoirs Barra Bonita, Promissao and Tres Irmaos). Results confirm that most toxicity is due to the discharges of the metropolitan area of Sao Paulo. However, they also indicate additional sources of pollutants along the river course, probably from industrial, agricultural and agroindustrial residues, which contribute to the degradation of each area. The sediment contact fish embryo test showed to be powerful tool to detect embryo toxicity in sediments, not only by being a sensitive method, but also for taking into account bioavailability. This test provides an ecological highly realistic and relevant exposure scenario, and should therefore be added in ecotoxicological sediment quality assessments. (C) 2011 Elsevier Inc. All rights reserved.