37 resultados para ELECTRON-TRANSFER REACTION

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

100.00% 100.00%

Publicador:

Resumo:

The activation parameters for the thermal decomposition of 13 acridinium-substituted 1,2-dioxetanes, bearing an aromatic moiety, were determined and their chemiluminescence emission quantum yields estimated, utilizing in situ photosensitized 1,2-dioxetane generation and observation of its thermal decomposition kinetics, without isolation of these highly unstable cyclic peroxides. Decomposition rate constants show linear free-energy correlation for electron-withdrawing substituents, with a Hammett reaction constant of rho = 1.3 +/- 0.1, indicating the occurrence of an intramolecular electron transfer from the acridinium moiety to the 1,2-dioxetane ring, as postulated by the intramolecular chemically initiated electron exchange luminescence (CIEEL) mechanism. Emission quantum yield behavior can also be rationalized on the basis of the intramolecular CIEEL mechanism, additionally evidencing its occurrence in this transformation. Both relations constitute the first experimental evidence for the occurrence of the postulated intramolecular electron transfer in the catalyzed and induced decomposition of properly substituted 1,2-dioxetanes.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Pterins are members of a family of heterocyclic compounds present in a wide variety of biological systems and may exist in two forms, corresponding to an acid and a basic tautomer. In this work, the proton transfer reaction between these tautomeric forms was investigated in the gas phase and in aqueous solution. In gas phase, the intramolecular mechanism was carried out for die isolated pterin by quantum mechanical second-order Moller-Plesset Perturbation theory (MP2/aug-cc-pVDZ) calculations and it indicates that the acid form is more stable than the basic form by -1.4 kcal/mol with a barrier of 34.2 kcal/mol with respect to the basic form. In aqueous solution, the role of the water molecules in the proton transfer reaction was analyzed in two separated parts, the direct participation of one water molecule in the reaction path, called water-assisted mechanism, and the complementary participation of the aqueous solvation. The water-assisted mechanism was carried out for one pterin-water cluster by quantum mechanical calculations and it indicates that the acid form is still more stable by -3.3 kcal/mol with a drastic reduction of 70% of the barrier, The bulk solution effect on the intramolecular and water-assisted mechanisms was included by free energy perturbation implemented on Monte Carlo simulations. The bulk water effect is found to be substantial and decisive when the reaction path involves the water-assisted mechanism. In this case, the free energy barrier is only 6.7 kcal/mol and the calculated relative Gibbs free energy for the two tautomers is -11.2 kcal/mol. This value is used to calculate the pK(a) value of 8.2 +/- 0.6 that is in excellent agreement with the experimental result of 7.9.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Nanosecond laser flash photolysis has been used to investigate injection and back electron transfer from the complex [(Ru-(bpy)(2)(4,4`-(PO(3)H(2))(2)bpy)](2+) surface-bound to TiO(2) (TiO(2)-Ru(II)). The measurements were conducted under conditions appropriate for water oxidation catalysis by known single-site water oxidation catalysts. Systematic variations in average lifetimes for back electron transfer, - were observed with changes in pH, surface coverage, incident excitation intensity, and applied bias. The results were qualitatively consistent with a model involving rate-limiting thermal activation of injected electrons from trap sites to the conduction band or shallow trap sites followed by site-to-site hopping and interfacial electron transfer, TiO(2)(e(-))-Ru(3+) -> TiO(2)-Ru(2+). The appearance of pH-dependent decreases in the efficiency of formation of TiO(2)-Ru(3+) and in incident-photon-to-current efficiencies with the added reductive scavenger hydroquinone point to pH-dependent back electron transfer processes on both the sub-nanosecond and millisecond-microsecond time scales, which could be significant in limiting long-term storage of multiple redox equivalents.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

STM and impedance results of the self-assembled monolayer (SAM) formed with thionicotinamide (TNA) on gold indicate the presence of defects that increase with the immersion time of the electrode in the TNA solution affecting the SAM electroactivity toward the electron transfer reaction of the cytochrome e metalloprotein and [Fe(CN)(6)](4-) and [Ru(NH(3))(6)](3+) complexes. It was observed that this electroactivity was also affected by the pH of the electrolyte solution. SERS and STM data indicate sulfur coordination to the surface with contribution of the NH(2) group. From the dependence of the TNA surface coverage on the temperature and concentration in solution, thermodynamic parameters of adsorption were determined.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Singlet oxygen ((1)O(2)) generation in the reaction centers (RCs) of Rhodobacter sphaeroides wild type was characterized by luminescent emission in the near infrared region (time resolved transients and emission spectra) and quantified to have quantum yield of 0.03 +/- 0.005. (1)O(2) emission was measured as a function of temperature, ascorbate, urea and potassium ferricyanide concentrations and as a function of incubation time in H(2)O: D(2)O mixtures. (1)O(2) was shown to be affected by the RC dynamics and to originate from the reaction of molecular oxygen with two sources of triplets: photoactive dimer formed by singlet-triplet mixing and bacteriopheophytin formed by direct photoexcitation and intersystem crossing.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

Herein, we report on the synthesis of photosensitizing nanoparticles in which the generation of different oxidizing species, i.e., singlet oxygen ((1)O(2)) or radicals, was modulated. Sol gel and surface chemistry were used to obtain nanoparticles with specific ratios of dimer to monomer species of phenothiazine photosensitizers (PSs). Due to competition between the reactions involving electron transfer within dimer species and energy transfer from monomer triplets to oxygen, the efficiency of (1)O(2) generation could be controlled. Nanoparticles with an excess of dimer have an (1)O(2) generation efficiency (S(Delta)) of 0.01 while those without dimer have a S, value of 0.4. Furthermore, we demonstrate that the PS properties of the nanoparticles are not subjected to interference from the external medium as is commonly the case for free PSs, i.e., PS ground and triplet states are not reduced by NADH and ascorbate, respectively, and singlet excited states are less suppressed by bromide. The modulated (1)O(2) generation and the PS protection from external interferences make this nanoparticle platform a promising tool to aid in performing mechanistic studies in biological systems. Also, it offers potential application in technological areas in which photo-induced processes take place.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Cross sections for the (6)Li(p,gamma)(7)Be, (7)Li(n,gamma)(8)Li (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be capture reactions have been investigated in the framework of the potential model. The main ingredients of the potential model are the potentials used to generate the continuum and bound-state wave functions and spectroscopic factors of the corresponding bound systems. The spectroscopic factors for the (7)Li circle times n=(8)Li(gs), (8)Li circle times n=(9)Li(gs) bound systems were obtained from a FR-DWBA analysis of neutron transfer reactions induced by (8)Li radioactive beam on a (9)Be target, while spetroscopic factor for the (8)Li circle times n=(9)Be(gs) bound system were obained from a proton transfer reaction. From the obtained capture reaction cross section, reaction rate for the (8)Li(n,gamma)(9)Li and (8)Li(p,gamma)(9)Be direct neutron and proton capture were determined and compared with other experimental and calculated values.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Three novel hybrid organic/inorganic materials were synthesized from 4-substituted (NO(2), Br, H) 1,8-naphthalene imide-N-propyltriethoxysilane by the sol-gel process. These materials were obtained as a xerogel and partially characterized. The ability to photosensitize the oxidation and degradation of tryptophan indole ring by these materials was studied through photophysical and photochemical techniques. Although the derivatives containing Br and NO(2) as substituent do not cause efficient tryptophan photodamage, the hybrid material obtained from 1,8-naphthalic anhydride is very efficient to promote tryptophan photooxidation. By using laser flash photolysis it was possible to verify the presence of naphthalene imide transient radical species. The presence of oxygen causes an increase of the yield of radical formation. These results suggest that the mechanism of photodegradation of tryptophan occurs by type I, i.e. the transient radical (TrpH(center dot+)) formed by the direct reaction of the triplet state of the naphthalene imide moiety with tryptophan. Thus a inorganic-organic hybrid material that can be used to promote the oxidation of biomolecules was obtained. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

Efficient compact TiO(2) films using different polyeleetrolytes are prepared by the layer-by-layer technique (LbL) and applied as an effective contact and blocking film in dye-sensitized solar cells (DSCs). The polyanion thermal stability plays a major role on the compact layers, which decreases back electron transfer processes and current losses at the FTO/TiO(2) interface. FESEM images show that polyelectrolytes such is sodium sullonated polystyrene (PSS) and sulfonated lignin (SE), in comparison to poly(acrylic acid) (FAA), ensure an adequate morphology for the LbL TiO(2) layer deposited before the mesoporous film, even triter the sintering step at 450 degrees C. The so treated photoanode in DSCs leads to a 30% improvement On the overall conversion efficiency. Electrochemical impedance spectroscopy (EIS) is employed to ascertain the role of die compact films with such polyelectrolytes. The significant increase in V(oc) of the solar cells with adequate polyelectrolytes in the LbL TiO(2) films shows their pivotal role in decreasing the electron recombination at the FTO surface and enhancing the electrical contact of FTO with the mesoporous TiO(2) layer.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

A novel biosensor for glucose was prepared by adsorption of 1,1`-bis(4-carboxybenzyl)-4,4`-bipyridinium di-bromide compound (H(2)BpybcBr(2)) onto the surface of a nanocrystalline TiO(2) film deposited onto FTO glasses, which was used as a platform to assemble the enzyme glucose oxidase to the electrode surface. The H(2)BpybcBr(2)/TiO(2)/FTO modified electrode was characterized by scanning electron microscopy, X-ray fluorescence image, cyclic voltammograms and spectroelectrochemical measurements. The immobilization of GOD on functionalized TiO(2) film led to stable amperometric biosensing for glucose with a linear range from 153 mu mol L(-1) to 1.30 mmol L(-1) and a detection limit of 51 mu mol L(-1). The apparent Michaelis-Menten constant (K(m)) was estimated to be 3.76 mmol L(-1), which suggested a high enzyme-substrate affinity. The maximum electrode sensitivity was 1.25 mu A mmol L(-1). The study proved that the combination of viologen mediators with TiO(2) film retains the electrocatalytic activity of the enzyme, and also enhances the electron transfer process, and hence regenerating the enzyme in the reaction with glucose. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The intermediacy of the geminate base proton pair (A*center dot center dot center dot H(+)) in excited-state proton-transfer (ESPT) reactions (two-step mechanism) has been investigated employing the synthetic flavylium salt 7-hydroxy-4-methyl-flavylium chloride (HMF). In aqueous solution, the ESPT mechanism involves solely the excited acid AH* and base A* forms of HMF as indicated by the fluorescence spectra and double-exponential fluorescence decays (two species, two decay times). However, upon addition of either 1,4-dioxane or 1,2-propylene glycol, the decays become triple-exponential with a term consistent with the presence of the geminate base proton pair A*center dot center dot center dot H(+). The geminate pair becomes detectable because of the increase in the recombination rate constant, k(rec), of (A*center dot center dot center dot H(+)) with increasing the mole fraction of added organic cosolvent. Because the two-step ESPT mechanism splits the intrinsic prototropic reaction rates (deprotonation of AH(+)*, k(d), and recombination, k(rec) of A*center dot center dot center dot H(+)) from the diffusion controlled rates (dissociation, k(diss) and formation, k(diff)[H(+)], of A*center dot center dot center dot H+), the experimental detection of the geminate pair provides a wealth of information on the proton-transfer reaction (k(d) and k(rec)) as well as on proton diffusion/migration (k(diss) and k(diff)).

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The ozonolysis of 2,4-xylidine (2,4-dimethyl-aniline) in acidic aqueous solution was investigated by determining the major reaction products and their evolution as a function of the reaction time and their dependence on the pH of the reaction system. 2,4-Dimethyl-nitrobenzene and 2,4-dimethyl-phenol were found to be primary reaction products; their formation might be explained by electron transfer and substitution reactions. 2,4-Dimethyl-phenol was further oxidized yielding 2,4-dimethyl- and/or 4,6-dimethyl-resorcinol by electrophilic addition of HO(center dot) radicals. The best fitting phenomenological kinetic model and the good convergence of calculated and experimentally determined rate constants imply two additional competitive pathways of substrate oxidation: (i) electrophilic addition of HO(center dot) radicals and fast subsequent substitution would also yield the resorcinol derivatives. (ii) Substrate and isolated products are thought to be oxidized by hydrogen abstraction at the benzylic sites, but the corresponding products (alcohols, aldehydes, and carboxylic acids) could not be identified. Fe(II) was added to probe for the presence of H(2)O(2), but had no or only a minor effect on the kinetics of the ozonolysis. (c) 2009 Elsevier B.V. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The mechanism and the energy profile of the gas-phase reaction that mimics esterification under acidic conditions have been investigated at different levels of theory. These reactions are known to proceed with rate constants close to the collision limit in the gas-phase and questions have been raised as to whether the typical addition-elimination mechanism via a tetrahedral intermediate can explain the ease of these processes. Because these reactions are common to many organic and biochemical processes it is important to understand the intrinsic reactivity of these systems. Our calculations at different levels of theory reveal that a stepwise mechanism via a tetrahedral species is characterized by energy barriers that are inconsistent with the experimental results. For the thermoneutral exchange between protonated acetic acid and water and the exothermic reaction of protonated acetic acid and methanol our calculations show that these reactions proceed initially by a proton shuttle between the carbonyl oxygen and the hydroxy oxygen of acetic acid mediated by water, or methanol, followed by displacement at the acylium ion center. These findings suggest that the reactions in the gas-phase should be viewed as an acylium ion transfer reaction. (C) 2010 Wiley Periodicals, Inc. Int J Quantum Chem 111: 1596-1606, 2011

Relevância:

90.00% 90.00%

Publicador:

Resumo:

The bioelectrochemical behavior of three triphenylmethane (TPM) dyes commonly used as pH indicators, and their application in mediated electron transfer systems for glucose oxidase bioanodes in biofuel cells was investigated. Bromophenol Blue, Bromothymol Blue, Bromocresol Green were compared bio-electrochemically against two widely used mediators, benzoquinone and ferrocene carboxy aldehyde. Biochemical studies were performed in terms of enzymatic oxidation, enzyme affinity, catalytic efficiency and co-factor regeneration. The different features of the TPM dyes as mediators are determined by the characteristics in the oxidation/reduction processes studied electrochemically. The reversibility of the oxidation/reduction processes was also established through the dependence of the voltammetric peaks with the sweep rates. All three dyes showed good performances compared to the FA and BQ when evaluated in a half enzymatic fuel cell. Potentiodynamic and power response experiments showed maxima power densities of 32.8 mu W cm(-2) for ferrocene carboxy aldehyde followed by similar values obtained for TPM dyes around 30 mu W cm(-2) using glucose and mediator concentrations of 10 mmol L(-1) and 1.0 mmol L(-1), respectively. Since no mediator consumption was observed during the bioelectrochemical process, and also good redox re-cycled processes were achieved, the use of triphenylmethane dyes is considered to be promising compared to other mediated systems used with glucose oxiclase bioanodes and/or biofuel cells. (C) 2011 Elsevier Inc. All rights reserved.

Relevância:

90.00% 90.00%

Publicador:

Resumo:

NiO/Al(2)O(3) catalyst precursors were prepared by simultaneous precipitation, in a Ni:Al molar ratio of 3:1, promoted with Mo oxide (0.05, 0.5, 1.0 and 2.0 wt%). The solids were characterized by adsorption of N(2), XRD, TPR, Raman spectroscopy and XPS, then activated by H(2) reduction and tested for the catalytic activity in methane steam reforming. The characterization results showed the presence of NiO and Ni(2)AlO(4) in the bulk and Ni(2)AlO(4) and/or Ni(2)O(3) and MoO(4)(-2) at the surface of the samples. In the catalytic tests, high stability was observed with a reaction feed of 4:1 steam/methane. However, at a steam/methane ratio of 2: 1, only the catalyst with 0.05% Mo remained stable throughout the 500 min of the test. The addition of Mo to Ni catalysts may have a synergistic effect, probably as a result of electron transfer from the molybdenum to the nickel, increasing the electron density of the catalytic site and hence the catalytic activity. (C) 2009 Elsevier Ltd. All rights reserved.