50 resultados para Dynamic of localities
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This work describes the infrared spectroscopy characterization and the charge compensation dynamics in supramolecular film FeTPPZFeCN derived from tetra-2-pyridyl-1,4-pyrazine (TPPZ) with hexacyanoferrate, as well as the hybrid film formed by FeTPPZFeCN and polypyrrole (PPy). For supramolecular film, it was found that anion flux is greater in a K+ containing solution than in Li+ solution, which seems to be due to the larger crystalline ionic radius of K+. The electroneutralization process is discussed in terms of electrostatic interactions between cations and metallic centers in the hosting matrix. The nature of the charge compensation process differs from others modified electrodes based on Prussian blue films, where only cations such as K+ participate in the electroneutralization process. In the case of FeTPPZFeCN/PPy hybrid film, the magnitude of the anions’s flux is also dependent on the identity of the anion of the supporting electrolyte.
Resumo:
This study presents an alternative three-dimensional geometric non-linear frame formulation based on generalized unconstrained vector and positions to solve structures and mechanisms subjected to dynamic loading. The formulation is classified as total Lagrangian with exact kinematics description. The resulting element presents warping and non-constant transverse strain modes, which guarantees locking-free behavior for the adopted three-dimensional constitutive relation, Saint-Venant-Kirchhoff, for instance. The application of generalized vectors is an alternative to the use of finite rotations and rigid triad`s formulae. Spherical and revolute joints are considered and selected dynamic and static examples are presented to demonstrate the accuracy and generality of the proposed technique. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This article presents the results obtained from an experimental device designed for the accurate determination of wood/water relationship on microsamples. The moisture content of the sample is measured with a highly sensitive electronic microbalance and two dimensions of the sample are collected continuously without contact using high-speed laser scan micrometers. The whole device is placed in a climatic chamber. The microsamples investigated were prepared with a diamond wire saw. The unique ability of this device to work with small samples allowed normal, opposite, and reaction wood to be characterized separately. Experiments were carried out on three wood species (beech, spruce, and poplar). In the case of beech, a deviation from the linear relation between tangential shrinkage and moisture content between 40 and 20% is particularly noticeable for the first desorption. A localized collapse of ray cells could explain this result. Compared to normal wood, an important longitudinal shrinkage and a low tangential shrinkage were observed in compression wood of spruce. Both the tension wood and opposite wood of poplar exhibit a high longitudinal shrinkage, but no significant difference between the three types of wood is noticeable in the tangential direction.
Resumo:
The prevalence of the parasite Aporobopyrus curtatus in Petrolisthes armatus from southern Brazil was determined, and the effect the parasite had on host reproduction was evaluated. Of all 775 crabs sampled in Araca region from March 2005 to July 2006, 3.2% presented bopyrid parasites. All the parasitized individuals had one branchial chamber occupied by two mature parasites, with no preference for the right or left chamber. Male and female hosts were infested in equal proportions. Parasitized juveniles, large individuals and ovigerous females were not found in our study. The absence of parasitized ovigerous females seems to be insufficient evidence to support the hypothesis of parasitic castration and would require a histological study to confirm their reproductive death. The percentage of infestation observed in our study (3.1%) is lower than the one found in other studies and it could indicate the existence of factor(s) regulating the density of A. curtatus in the Araca region. At least in this population, the low but constant presence of the bopyrid A. curtatus population did not appear to have a negative effect on the porcellanid population, and parasitized individuals did not play a significant role in the natural history of P. armatus.
Resumo:
Amazon forests are potentially globally significant sources or sinks for atmospheric carbon dioxide. In this study, we characterize the spatial trends in carbon storage and fluxes in both live and dead biomass (necromass) in two Amazonian forests, the Biological Dynamic of Forest Fragments Project (BDFFP), near Manaus, Amazonas, and the Tapajos National Forest (TNF) near Santarem, Para. We assessed coarse woody debris (CWD) stocks, tree growth, mortality, and recruitment in ground-based plots distributed across the terra firme forest at both sites. Carbon dynamics were similar within each site, but differed significantly between the sites. The BDFFP and the TNF held comparable live biomass (167 +/- 7.6 MgC.ha(-1) versus 149 +/- 6.0 MgC.ha(-1), respectively), but stocks of CWD were 2.5 times larger at TNF (16.2 +/- 1.5 MgC.ha(-1) at BDFFP, versus 40.1 +/- 3.9 MgC.ha(-1) at TNF). A model of current forest dynamics suggests that the BDFFP was close to carbon balance, and its size class structure approximated a steady state. The TNF, by contrast, showed rapid carbon accrual to live biomass (3.24 +/- 0.22 MgC.ha(-1).a(-1) in TNF, 2.59 +/- 0.16 MgC.ha(-1).a(-1) in BDFFP), which was more than offset by losses from large stocks of CWD, as well as ongoing shifts of biomass among size classes. This pattern in the TNF suggests recovery from a significant disturbance. The net loss of carbon from the TNF will likely last 10 - 15 years after the initial disturbance (controlled by the rate of decay of coarse woody debris), followed by uptake of carbon as the forest size class structure and composition continue to shift. The frequency and longevity of forests showing such disequilibruim dynamics within the larger matrix of the Amazon remains an essential question to understanding Amazonian carbon balance.
Resumo:
Este artigo discute a incorporação e o uso da biotecnologia na Saúde Pública, no contexto da sociedade de risco. Tendo por referência autores da teoria social contemporânea, analisam-se as implicações das práticas biotecnológicas. O artigo está dividido em três partes. Na primeira, são apresentados alguns exemplos de manipulação biológica desenvolvidos no âmbito da saúde e as consequências da utilização dessas técnicas na dinâmica ecológica das populações envolvidas. A partir desses exemplos, discute-se o que vem a ser esses seres biologicamente modificados, híbridos, e como ocorre sua incorporação nas práticas sociais, especialmente as de Saúde Pública. A segunda parte apresenta o referencial teórico utilizado para análise, que situa a sociedade contemporânea na etapa reflexiva da modernização e que tem na sociedade de risco uma de suas configurações. A última parte do artigo problematiza os usos da biotecnologia em saúde, mais especificamente em Saúde Pública, abordando os aspectos de risco dessa aplicação, propondo o necessário debate sobre um outro pacto sanitário.
Resumo:
In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization
Resumo:
This work clarifies the relation between network circuit (topology) and behaviour (information transmission and synchronization) in active networks, e.g. neural networks. As an application, we show how one can find network topologies that are able to transmit a large amount of information, possess a large number of communication channels, and are robust under large variations of the network coupling configuration. This theoretical approach is general and does not depend on the particular dynamic of the elements forming the network, since the network topology can be determined by finding a Laplacian matrix (the matrix that describes the connections and the coupling strengths among the elements) whose eigenvalues satisfy some special conditions. To illustrate our ideas and theoretical approaches, we use neural networks of electrically connected chaotic Hindmarsh-Rose neurons.
Resumo:
This work deals with neural network (NN)-based gait pattern adaptation algorithms for an active lower-limb orthosis. Stable trajectories with different walking speeds are generated during an optimization process considering the zero-moment point (ZMP) criterion and the inverse dynamic of the orthosis-patient model. Additionally, a set of NNs is used to decrease the time-consuming analytical computation of the model and ZMP. The first NN approximates the inverse dynamics including the ZMP computation, while the second NN works in the optimization procedure, giving an adapted desired trajectory according to orthosis-patient interaction. This trajectory adaptation is added directly to the trajectory generator, also reproduced by a set of NNs. With this strategy, it is possible to adapt the trajectory during the walking cycle in an on-line procedure, instead of changing the trajectory parameter after each step. The dynamic model of the actual exoskeleton, with interaction forces included, is used to generate simulation results. Also, an experimental test is performed with an active ankle-foot orthosis, where the dynamic variables of this joint are replaced in the simulator by actual values provided by the device. It is shown that the final adapted trajectory follows the patient intention of increasing the walking speed, so changing the gait pattern. (C) Koninklijke Brill NV, Leiden, 2011
Resumo:
In this paper, we present a fuzzy approach to the Reed-Frost model for epidemic spreading taking into account uncertainties in the diagnostic of the infection. The heterogeneities in the infected group is based on the clinical signals of the individuals (symptoms, laboratorial exams, medical findings, etc.), which are incorporated into the dynamic of the epidemic. The infectivity level is time-varying and the classification of the individuals is performed through fuzzy relations. Simulations considering a real problem with data of the viral epidemic in a children daycare are performed and the results are compared with a stochastic Reed-Frost generalization.
Resumo:
Yellow passion fruit pulp is unstable, presenting phase separation that can be avoided by the addition of hydrocolloids. For this purpose, xanthan and guar gum [0.3, 0.7 and 1.0% (w/w)] were added to yellow passion fruit pulp and the changes in the dynamic and steady - shear rheological behavior evaluated. Xanthan dispersions showed a more pronounced pseudoplasticity and the presence of yield stress, which was not observed in the guar gum dispersions. Cross model fitting to flow curves showed that the xanthan suspensions also had higher zero shear viscosity than the guar suspensions, and, for both gums, an increase in temperature led to lower values for this parameter. The gums showed different behavior as a function of temperature in the range of 5 - 35ºC. The activation energy of the apparent viscosity was dependent on the shear rate and gum concentration for guar, whereas for xanthan these values only varied with the concentration. The mechanical spectra were well described by the generalized Maxwell model and the xanthan dispersions showed a more elastic character than the guar dispersions, with higher values for the relaxation time. Xanthan was characterized as a weak gel, while guar presented a concentrated solution behavior. The simultaneous evaluation of temperature and concentration showed a stronger influence of the polysaccharide concentration on the apparent viscosity and the G' and G" moduli than the variation in temperature.
Resumo:
This paper presents a rational approach to the design of a catamaran's hydrofoil applied within a modern context of multidisciplinary optimization. The approach used includes the use of response surfaces represented by neural networks and a distributed programming environment that increases the optimization speed. A rational approach to the problem simplifies the complex optimization model; when combined with the distributed dynamic training used for the response surfaces, this model increases the efficiency of the process. The results achieved using this approach have justified this publication.
Resumo:
Background: Detailed analysis of the dynamic interactions among biological, environmental, social, and economic factors that favour the spread of certain diseases is extremely useful for designing effective control strategies. Diseases like tuberculosis that kills somebody every 15 seconds in the world, require methods that take into account the disease dynamics to design truly efficient control and surveillance strategies. The usual and well established statistical approaches provide insights into the cause-effect relationships that favour disease transmission but they only estimate risk areas, spatial or temporal trends. Here we introduce a novel approach that allows figuring out the dynamical behaviour of the disease spreading. This information can subsequently be used to validate mathematical models of the dissemination process from which the underlying mechanisms that are responsible for this spreading could be inferred. Methodology/Principal Findings: The method presented here is based on the analysis of the spread of tuberculosis in a Brazilian endemic city during five consecutive years. The detailed analysis of the spatio-temporal correlation of the yearly geo-referenced data, using different characteristic times of the disease evolution, allowed us to trace the temporal path of the aetiological agent, to locate the sources of infection, and to characterize the dynamics of disease spreading. Consequently, the method also allowed for the identification of socio-economic factors that influence the process. Conclusions/Significance: The information obtained can contribute to more effective budget allocation, drug distribution and recruitment of human skilled resources, as well as guiding the design of vaccination programs. We propose that this novel strategy can also be applied to the evaluation of other diseases as well as other social processes.
Resumo:
The dynamic polarizability and optical absorption spectrum of liquid water in the 6-15 eV energy range are investigated by a sequential molecular dynamics (MD)/quantum mechanical approach. The MD simulations are based on a polarizable model for liquid water. Calculation of electronic properties relies on time-dependent density functional and equation-of-motion coupled-cluster theories. Results for the dynamic polarizability, Cauchy moments, S(-2), S(-4), S(-6), and dielectric properties of liquid water are reported. The theoretical predictions for the optical absorption spectrum of liquid water are in good agreement with experimental information.
Resumo:
The concept of constitutional dynamic chemistry (CDC) based on the control of non-covalent interactions in supramolecular structures is promising for having a large impact on nanoscience and nanotechnology if adequate nanoscale manipulation methods are used. In this study, we demonstrate that the layer-by-layer (LbL) technique may be used to produce electroactive electrodes with ITO coated by tetrasulfonated nickel phthalocyanine (NiTsPc) alternated with poly(allylamine hydrochloride) (PAH) incorporating gold nanoparticles (AuNP), in which synergy has been achieved in the interaction between the nanoparticles and NiTsPc. The catalytic activity toward hydrogen peroxide (H(2)O(2)) in multilayer films was investigated using cyclic voltammetry, where oxidation of H(2)O(2) led to increased currents in the PAH-AuNP/NiTsPc films for the electrochemical processes associated with the phthalocyanine ring and nickel at 0.52 and 0.81 V vs. SCE, respectively, while for PAH/NiTsPc films (without AuNP) only the first redox process was affected. In control experiments we found out that the catalytic activity was not solely due to the presence of AuNP, but rather to the nanoparticles inducing NiTsPc supramolecular structures that favored access to their redox sites, thus yielding strong charge transfer. The combined effects of NiTsPc and AuNP, which could only be observed in nanostructured LbL films, point to another avenue to pursue within the CDC paradigm.