7 resultados para Dynamic Emission Modeling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
In the present study, a three-dimensional Eulerian photochemical model was employed to estimate the impact that organic compounds have on tropospheric ozone formation in the Metropolitan Area of Sao Paulo (MASP). In the year 2000, base case simulations were conducted in two periods: August 22-24 and March 13-15. Based on the pollutant concentrations calculated by the model, the correlation coefficient relative to observations for ozone ranged from 0.91 to 0.93 in both periods. In the simulations employed to evaluate the ozone potential of individual VOCs, as well as the sensitivity of ozone to the VOC/NO(x) emission ratio, the variation in anthropogenic emissions was estimated at 15% (according to tests performed previously variations of 15% were stable). Although there were significant differences between the two periods, ozone concentrations were found to be much more sensitive to VOCs than to NO(x) in both periods and throughout the study domain. In addition, considering their individual rates of emission from vehicles, the species/classes that were most important for ozone formation were as follows: aromatics with a kOH>2x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); olefins with a kOH 7 x 10(4) ppm(-1) min(-1); ethene; and formaldehyde, which are the principal species related to the production, transport, storage and combustion of fossil fuels.
Resumo:
We have developed a spectrum synthesis method for modeling the ultraviolet (UV) emission from the accretion disk from cataclysmic variables (CVs). The disk is separated into concentric rings, with an internal structure from the Wade & Hubeny disk-atmosphere models. For each ring, a wind atmosphere is calculated in the comoving frame with a vertical velocity structure obtained from a solution of the Euler equation. Using simple assumptions, regarding rotation and the wind streamlines, these one-dimensional models are combined into a single 2.5-dimensional model for which we compute synthetic spectra. We find that the resulting line and continuum behavior as a function of the orbital inclination is consistent with the observations, and verify that the accretion rate affects the wind temperature, leading to corresponding trends in the intensity of UV lines. In general, we also find that the primary mass has a strong effect on the P Cygni absorption profiles, the synthetic emission line profiles are strongly sensitive to the wind temperature structure, and an increase in the mass-loss rate enhances the resonance line intensities. Synthetic spectra were compared with UV data for two high orbital inclination nova-like CVs-RW Tri and V347 Pup. We needed to include disk regions with arbitrary enhanced mass loss to reproduce reasonably well widths and line profiles. This fact and a lack of flux in some high ionization lines may be the signature of the presence of density-enhanced regions in the wind, or alternatively, may result from inadequacies in some of our simplifying assumptions.
Resumo:
FS CMa type stars are a recently described group of objects with the B[e] phenomenon which exhibits strong emission-line spectra and strong IR excesses. In this paper, we report the first attempt for a detailed modeling of IRAS 00470+6429, for which we have the best set of observations. Our modeling is based on two key assumptions: the star has a main-sequence luminosity for its spectral type (B2) and the circumstellar (CS) envelope is bimodal, composed of a slowly outflowing disklike wind and a fast polar wind. Both outflows are assumed to be purely radial. We adopt a novel approach to describe the dust formation site in the wind that employs timescale arguments for grain condensation and a self-consistent solution for the dust destruction surface. With the above assumptions we were able to satisfactorily reproduce many observational properties of IRAS 00470+6429, including the Hi line profiles and the overall shape of the spectral energy distribution. Our adopted recipe for dust formation proved successful in reproducing the correct amount of dust formed in the CS envelope. Possible shortcomings of our model, as well as suggestions for future improvements, are discussed.
Resumo:
We present a new technique for obtaining model fittings to very long baseline interferometric images of astrophysical jets. The method minimizes a performance function proportional to the sum of the squared difference between the model and observed images. The model image is constructed by summing N(s) elliptical Gaussian sources characterized by six parameters: two-dimensional peak position, peak intensity, eccentricity, amplitude, and orientation angle of the major axis. We present results for the fitting of two main benchmark jets: the first constructed from three individual Gaussian sources, the second formed by five Gaussian sources. Both jets were analyzed by our cross-entropy technique in finite and infinite signal-to-noise regimes, the background noise chosen to mimic that found in interferometric radio maps. Those images were constructed to simulate most of the conditions encountered in interferometric images of active galactic nuclei. We show that the cross-entropy technique is capable of recovering the parameters of the sources with a similar accuracy to that obtained from the very traditional Astronomical Image Processing System Package task IMFIT when the image is relatively simple (e. g., few components). For more complex interferometric maps, our method displays superior performance in recovering the parameters of the jet components. Our methodology is also able to show quantitatively the number of individual components present in an image. An additional application of the cross-entropy technique to a real image of a BL Lac object is shown and discussed. Our results indicate that our cross-entropy model-fitting technique must be used in situations involving the analysis of complex emission regions having more than three sources, even though it is substantially slower than current model-fitting tasks (at least 10,000 times slower for a single processor, depending on the number of sources to be optimized). As in the case of any model fitting performed in the image plane, caution is required in analyzing images constructed from a poorly sampled (u, v) plane.
Resumo:
Low-density lipoprotein (LDL) particles are the major cholesterol-carrying lipoprotein in the human circulation from the liver to peripheral tissues. High levels of LDL-Cholesterol (LDL-C) are known risk factor for the development of coronary artery disease (CAD). The most common approach to determine the LDLC in the clinical laboratory involves the Friedewald formula. However, in certain situations, this approach is inadequate. In this paper we report on the enhancement on the Europium emission band of Europium chlortetracycline complex (CTEu) in the presence of LDL. The emission intensity at 615 nm of the CTEu increases with increasing amounts of LDL. This phenomenon allowed us to propose a method to determine the LDL concentration in a sample composed by an aqueous solution of LDL. With this result we obtained LDL calibration curve, LOD (limit of detection) of 0.49 mg/mL and SD (standard deviation) of 0.003. We observed that CTEu complex provides a wider dynamic concentration-range for LDL determination than that from Eu-tetracycline previously. The averaged emission lifetimes of the CTEu and CTEu with LDL (1.5 mg/mL) complexes were measured as 15 and 46 Its, respectively. Study with some metallic interferents is presented. (C) 2010 Elsevier Inc. All rights reserved.
Dynamic Changes in the Mental Rotation Network Revealed by Pattern Recognition Analysis of fMRI Data
Resumo:
We investigated the temporal dynamics and changes in connectivity in the mental rotation network through the application of spatio-temporal support vector machines (SVMs). The spatio-temporal SVM [Mourao-Miranda, J., Friston, K. J., et al. (2007). Dynamic discrimination analysis: A spatial-temporal SVM. Neuroimage, 36, 88-99] is a pattern recognition approach that is suitable for investigating dynamic changes in the brain network during a complex mental task. It does not require a model describing each component of the task and the precise shape of the BOLD impulse response. By defining a time window including a cognitive event, one can use spatio-temporal fMRI observations from two cognitive states to train the SVM. During the training, the SVM finds the discriminating pattern between the two states and produces a discriminating weight vector encompassing both voxels and time (i.e., spatio-temporal maps). We showed that by applying spatio-temporal SVM to an event-related mental rotation experiment, it is possible to discriminate between different degrees of angular disparity (0 degrees vs. 20 degrees, 0 degrees vs. 60 degrees, and 0 degrees vs. 100 degrees), and the discrimination accuracy is correlated with the difference in angular disparity between the conditions. For the comparison with highest accuracy (08 vs. 1008), we evaluated how the most discriminating areas (visual regions, parietal regions, supplementary, and premotor areas) change their behavior over time. The frontal premotor regions became highly discriminating earlier than the superior parietal cortex. There seems to be a parcellation of the parietal regions with an earlier discrimination of the inferior parietal lobe in the mental rotation in relation to the superior parietal. The SVM also identified a network of regions that had a decrease in BOLD responses during the 100 degrees condition in relation to the 0 degrees condition (posterior cingulate, frontal, and superior temporal gyrus). This network was also highly discriminating between the two conditions. In addition, we investigated changes in functional connectivity between the most discriminating areas identified by the spatio-temporal SVM. We observed an increase in functional connectivity between almost all areas activated during the 100 degrees condition (bilateral inferior and superior parietal lobe, bilateral premotor area, and SMA) but not between the areas that showed a decrease in BOLD response during the 100 degrees condition.
Resumo:
A dynamic atmosphere generator with a naphthalene emission source has been constructed and used for the development and evaluation of a bioluminescence sensor based on the bacteria Pseudomonas fluorescens HK44 immobilized in 2% agar gel (101 cell mL(-1)) placed in sampling tubes. A steady naphthalene emission rate (around 7.3 nmol min(-1) at 27 degrees C and 7.4 mLmin(-1) of purified air) was obtained by covering the diffusion unit containing solid naphthalene with a PTFE filter membrane. The time elapsed from gelation of the agar matrix to analyte exposure (""maturation time"") was found relevant for the bioluminescence assays, being most favorable between 1.5 and 3 h. The maximum light emission, observed after 80 min, is dependent on the analyte concentration and the exposure time (evaluated between 5 and 20 min), but not on the flow rate of naphthalene in the sampling tube, over the range of 1.8-7.4 nmol min(-1). A good linear response was obtained between 50 and 260 nmol L-1 with a limit of detection estimated in 20 nmol L-1 far below the recommended threshold limit value for naphthalene in air. (c) 2008 Elsevier B.V. All rights reserved.