47 resultados para Dry mass of aerial parts
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
The present study describes the volatile composition of aerial parts (leaves and stems), flowers and fruits from Bidens gardneri and Bidens sulphurea. The first species is widely distributed in Pantanal (Brazil) and is a traditional medicinal plant, while the second species is widely distributed throughout Brazil. In all analyses, observed were constituents like bicycloelemene, alpha-copaene, beta-caryophyllene, germacrene D, bicyclogermacrene and others. However, some compounds were identified only in one part of the plants analyzed. These results indicated sonic differences in the composition of the plants studied and they were in agreement with data of literature.
Resumo:
Context: Species of Baccharis exhibit antibiotic, antiseptic, and wound-healing properties, and have been used in the traditional medicine of South America for the treatment of inflammation, headaches, diabetes, and hepatobiliary disorders. Objective: To investigate the anti-inflammatory activity of organic phases from EtOH extract of the aerial parts of Baccharis uncinella DC (Asteraceae). Materials and methods: The crude EtOH extract from the aerial parts of B. uncinella was subjected to partition procedures and the corresponding CH(2)Cl(2) and EtOAc phases were subjected to several chromatographic separation procedures. Thus, these phases and their purified compounds were assayed for evaluation of anti-inflammatory activity. Results: The CH(2)Cl(2) phase from EtOH extract from B. uncinella contained two triterpenoids (oleanolic and ursolic acids) and one flavonoid (pectolinaringenin), whereas the respective EtOAc phase showed to be composed mainly by two phenylpropanoid derivatives (caffeic and ferulic acids). The CH(2)Cl(2) and EtOAc phases as well as their isolated compounds exhibited anti-inflammatory effects against inflammatory reactions induced by phospholipase A2 (from Crotalus durissus terrificus venom) and by carrageenan. Discussion and conclusion: The results suggested that the components obtained from partition phases of EtOH extract of B. uncinella could represent lead molecules for the development of anti-inflammatory agents. Additionally, the results confirmed the use of Baccharis genus in the traditional medicine of South America for the treatment of inflammation and other heath disorders. To date, the present work describes for the first time the anti-inflammatory effects of compounds isolated from B. uncinella.
Resumo:
Species of Baccharis exhibit antibiotic, antiseptic, wound-healing, and anti-protozoal properties, and have been used in the traditional medicine of South America for the treatment of several diseases. In the present work, the fractionation of EtOH extract from aerial parts of Baccharis uncinella indicated that the isolated compounds caffeic acid and pectolinaringenin showed inhibitory activity against Leishmania (L.) amazonensis and Leishmania (V.) braziliensis promastigotes, respectively. Moreover, amastigote forms of both species were highly sensible to the fraction composed by oleanolic + ursolic acids and pectolinaringenin. Caffeic acid also inhibited amastigote forms of L. (L.) amazonensis, but this effect was weak in L. (V.) braziliensis amastigotes. The treatment of infected macrophages with these compounds did not alter the levels of nitrates, indicating a direct effect of the compounds on amastigote stages. The results presented herein suggest that the active components from B. uncinella can be important to the design of new drugs against American tegumentar leishmaniases.
Resumo:
2D DOSY (1)H NMR has proved to be a useful technique in the identification of the molecular skeleton of the four major compounds of ethyl acetate extract of aerial parts of Bidens sulphurea (Asteraceae). The combination of this technique with HPLC, mass spectrometry and other NMR techniques enabled the identification of four flavonoid glycosides: quercetin-3-O-beta-D-galactopyranoside, quercetin-3-O-beta-D-glycopyranoside, quercetin-3-O-alpha-L-arabinofuranoside and quercetin-3-O-beta-D-rhamnopyranoside. Copyright (C) 2009 John Wiley & Sons, Ltd.
Resumo:
The growing interest in solar twins is motivated by the possibility of comparing them directly to the Sun. To carry on this kind of analysis, we need to know their physical characteristics with precision. Our first objective is to use asteroseismology and interferometry on the brightest of them: 18 Sco. We observed the star during 12 nights with HARPS for seismology and used the PAVO beam-combiner at CHARA for interferometry. An average large frequency separation 134.4+/-0.3 mu Hz and angular and linear radiuses of 0.6759 +/- 0.0062 mas and 1.010 +/- 0.009 R(circle dot) were estimated. We used these values to derive the mass of the star, 1.02 +/- 0.03 M(circle dot).
Resumo:
Size-resolved vertical aerosol number fluxes of particles in the diameter range 0.25-2.5 mu m were measured with the eddy covariance method from a 53 m high tower over the Amazon rain forest, 60 km NNW of Manaus, Brazil. This study focuses on data measured during the relatively clean wet season, but a shorter measurement period from the more polluted dry season is used as a comparison. Size-resolved net particle fluxes of the five lowest size bins, representing 0.25-0.45 mu m in diameter, were in general dominated by deposition in more or less all wind sectors in the wet season. This is an indication that the source of primary biogenic aerosol particles may be small in this particle size range. Transfer velocities within this particle size range were observed to increase linearly with increasing friction velocity and increasing particle diameter. In the diameter range 0.5-2.5 mu m, vertical particle fluxes were highly dependent on wind direction. In wind sectors where anthropogenic influence was low, net upward fluxes were observed. However, in wind sectors associated with higher anthropogenic influence, deposition fluxes dominated. The net upward fluxes were interpreted as a result of primary biogenic aerosol emission, but deposition of anthropogenic particles seems to have masked this emission in wind sectors with higher anthropogenic influence. The net emission fluxes were at maximum in the afternoon when the mixed layer is well developed, and were best correlated with horizontal wind speed according to the equation log(10)F = 0.48.U + 2.21 where F is the net emission number flux of 0.5-2.5 mu m particles [m(-2) s(-1)] and U is the horizontal wind speed [ms(-1)] at the top of the tower.
Resumo:
This work investigated the influence of different concentrations of calcium on the growth of plantlets of the bromeliad Aechmea blanchetiana cultured in vitro. Seedlings of A. blanchetiana were axenically cultured in liquid Murashige and Skoog basal medium supplemented with different concentrations of calcium (Ca; 1.5, 3, 4.5, 6, or 12 mM) without growth regulators. The resulting plantlets were cultured under 93 mol m-2 s-1 illumination, 12 hour photoperiod regime and 25C 1 for 120 days with subculture to fresh identical media every 30 days. The addition of calcium at 9.38 mM to MS modified medium increased the production of fresh and dry mass of plantlets, whilst chlorine from calcium chloride dehydrate (CaCl2 2 H2O) in excess (3.35 mM) decreased both the fresh and dry mass of plantlets.
Resumo:
Fluoride (F) is an air pollutant that causes phytotoxicity. Besides the importance of this, losses of agricultural crops in the vicinity of F polluting industries in Brazil have been recently reported. Injuries caused to plant leaf cell structures by excess F are not well characterized. However, this may contribute to understanding the ways in which plant physiological and biochemical processes are altered. A study evaluated the effects of the atmospheric F on leaf characteristics and growth of young trees of sweet orange and coffee exposed to low (0.04 mol L(-1)) or high (0.16 mol L(-1)) doses of HF nebulized in closed chamber for 28 days plus a control treatment not exposed. Gladiolus and ryegrass were used as bioindicators in the experiment to monitor F exposure levels. Fluoride concentration and dry mass of leaves were evaluated. Leaf anatomy was observed under light and electron microscopy. High F concentrations (similar to 180 mg kg(-1)) were found in leaves of plants exposed at the highest dose of HF. Visual symptoms of F toxicity in leaves of citrus and coffee were observed. Analyses of plant tissue provided evidence that F caused degeneration of cell wall and cytoplasm and disorganization of bundle sheath, which were more evident in Gladiolus and coffee. Minor changes were observed for sweet orange and ryegrass. Increase on individual stomatal area was also marked for the Gladiolus and coffee, and which were characterized by occurrence of opened ostioles. The increased F absorption by leaves and changes at the structural and ultrastructural level of leaf tissues correlated with reduced plant growth.
Resumo:
This study aimed to establish the optimum level of palm kernel meal in the diet of Santa Ines lambs based on the sensorial characteristics and fatty acid profile of the meat. We used 32 lambs with a starting age of 4 to 6 months and mean weight of 22 2.75 kg, kept in individual stalls. The animals were fed with Tifton-85 hay and a concentrate mixed with 0.0, 6.5, 13.0 or 19.5% of palm kernel meal based on the dry mass of the complete diet. These levels formed the treatments. Confinement lasted 80 days and on the last day the animals were fasted and slaughtered. After slaughter, carcasses were weighed and sectioned longitudinally, along the median line, into two antimeres. Half-carcasses were then sliced between the 12th and 13th ribs to collect the loin (longissimus dorsi), which was used to determine the sensorial characteristics and fatty acid profile of the meat. For sensorial evaluation, samples of meat were given to 54 judges who evaluated the tenderness, juiciness, appearance, aroma and flavor of the meat using a hedonic scale. Fatty acids were determined by gas chromatography. The addition of palm kernel meal to the diet had no effect on the sensorial characteristics of meat juiciness, appearance, aroma or flavor. However, tenderness showed a quadratic relationship with the addition of the meal to the diet. The concentration of fatty acids C12:0, C14:0 and C16:0 increased with the addition of palm kernel meal, as did the sum of medium-chain fatty acids and the atherogenicity index. Up to of 19.5% of the diet of Santa Ines lambs can be made up of palm kernel meal without causing significant changes in sensorial characteristics. However, the fatty acid profile of the meat was altered.
Resumo:
The infusion of aerial parts of Ilex paraguariensis is widely consumed. Its antioxidant activity suggests an important role of this plant in the treatment/prevention of oxidative stress related diseases. Plant extract active compounds are frequently found in esterified form that may be poorly absorbed. Hydrolysis of the extract is a possible approach to increase its bioavailability. The aim of this study was to perform a phytochemical analysis and evaluate in rats the plasma concentration and tissue distribution of antioxidant compounds in the hydroethanolic extract of Ilex paraguariensis, before and after enzymatic hydrolysis. Both extracts presented high antioxidant activity and phenolic content. Rats given single or repeated doses of the hydrolyzed extract showed increased plasma antioxidant activity and higher plasma levels of caffeic acid. However, no changes of endogenous antioxidants were observed. In conclusion, hydrolysis of the extract of Ilex paraguariensis is a strategy to improve its bioavailability and in vivo antioxidant activity.
Resumo:
Aim of the study: Alcoholic or hydroalcoholic preparations of the plant Solidago chilensis Meyen (Asteraceae) are employed in popular medicines to treat inflammation. The anti-inflammatory effects of the hydroalcoholic extract of aerial parts of the plant (93% ethanol) were investigated and the main components of the extract were identified. Materials and methods: Ear oedema was induced in male Wistar rats by topical application of the chloroform fraction of latex-extract from Euphorbia milii. Leukocyte mobilisation was quantified after air-pouch inflammation evoked by oyster glycogen. Leukocyte-endothelial interactions and mast cell degranulation were quantified by intravital microscopy. The extract itself was characterised via HPLC-DAD-MS and HPLC-MS/MS. Results: Topical (12.5-50 mg/kg) or intraperitoneal (25 or 50 mg/kg) administrations of the extract reduced ear oedema formation (>25% reduction). Intraperitoneal applications of 25 mg/kg of extract inhibited the migration of polymorphonuclear cells into the inflamed cavity (about 50%). In addition, the rolling behaviour and adherence of circulating leukocytes to postcapillary venules of the mesentery network was diminished (50%), but the mast cell degranulation in the perivascular area was not affected. The major components of the extract were identified as caffeoylquinic acid derivatives and the flavonoid rutin. Conclusions: The data presented herein show local and systemic anti-inflammatory effects of the hydroalcoholic extract of aerial parts of Solidago chilensis, and implicate the inhibition of leukocyte-endothelial interactions as an important mechanism of the extract`s action. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Adsorption of Ni(2+), Zn(2+) or Pb(2+) by dry biomass of Arthrospira (Spirulina) platensis and Chlorella vulgaris was studied as a function of contact time and initial metal concentration. The zero point of charge calculated for these biosorbents (pH(zpc) 4.0 and 3.4, respectively) and additional pH tests suggested the use of pH in the range 5.0-5.5 for the experiments. The equilibrium isotherms were evaluated in terms of maximum sorption capacity and sorption affinity. The pseudo first and second order kinetic models were considered to interpret the experimental data, and the latter best described the adsorption system. Both the Freundlich and Langmuir models were shown to well describe the sorption isotherms, thus suggesting an intermediate mono/multilayer sorption mechanism. Compared to A. platensis (q(e) = 0.354, 0.495 and 0.508 mmol g(-1) for Ni(2+), Pb(2)+ and Zn(2+), respectively), C. vulgaris behaved as a better biosorbent because of higher equilibrium sorption capacity (q(e) = 0.499, 0.634 and 0.664 mmol g(-1), respectively). The removal efficiency decreased with increasing metal concentration, pointing out a passive adsorption process involving the active sites on the surface of the biomasses. The FT-IR spectroscopy evidenced that ions removal occurred mainly by interaction between metal and carboxylate groups present on both the cell walls. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The effect of intra-bone injection of differentiated rat bone marrow mesenchymal stem cells (BMMSCs) into the femur of osteoporotic female rats was studied. Osteoporosis was induced in Wistar female rats by bilateral ovariectomy. Then, 0.75 million BMMSCs isolated from healthy rats were injected into the femurs of osteoporotic rats. Histomorphometric analysis and histology clearly revealed improvements in the treated group as compared to untreated group. In 2 months, the femurs of treated rats, unlike untreated rats, showed trabecular bone percentage almost similar to the femurs from control healthy rats. To confirm the origin of newly formed bone, the experiment was repeated with BMMSCs isolated from green fluorescent protein transgenic rats. Confocal microscopy demonstrated green fluorescent protein-positive cells at the surface of trabecular bone of the treated rats. We investigated in vitro osteogenic differentiation of BMMSCs isolated from osteoporotic rats by studying alkaline phosphatase activity, collagen synthesis, and the ability to form mineralized nodules. Osteoporotic BMMSCs showed less differentiation capabilities as compared to those isolated from healthy rats. The results clearly demonstrated the importance of BMMSCs in osteoporosis and that the disease can be treated by injection of BMMSCs.
Resumo:
Objective: This study evaluated the ability of benzalkonium chloride (BAC) to bind to dentine and to inhibit soluble recombinant MMPs and bound dentine matrix metalloproteinases (MMPs). Methods: Dentine powder was prepared from extracted human molars. Half was left mineralized; the other half was completely demineralized. The binding of BAG to dentine powder was followed by measuring changes in the supernatant concentration using UV spectrometry. The inhibitory effects of BAC on rhMMP-2, -8 and -9 were followed using a commercially available in vitro proteolytic assay. Matrix-bound endogenous MMP-activity was evaluated in completely demineralized beams. Each beam was either dipped into BAG and then dropped into 1 mL of a complete medium (CM) or they were placed in 1 mL of CM containing BAG for 30 days. After 30 days, changes in the dry mass of the beams or in the hydroxyproline (HYP) content of hydrolysates of the media were quantitated as indirect measures of matrix collagen hydrolysis by MMPs. Results: Demineralized dentine powder took up 10-times more BAG than did mineralized powder. Water rinsing removed about 50% of the bound BAC, whilst rinsing with 0.5 M NaCl removed more than 90% of the bound BAG. BAG concentrations 0.5 wt% produced 100% inhibition of soluble recombinant MMP-2, -8 or -9, and inhibited matrix-bound MMPs between 55 and 66% when measured as mass loss or 76-81% when measured as solubilization of collagen peptide fragments. Conclusions: BAC is effective at inhibiting both soluble recombinant MMPs and matrix-bound dentine MMPs in the absence of resins. (C) 2010 Elsevier Ltd. All rights reserved.
Resumo:
In the present work, the trivalent and hexavalent chromium phytoaccumulation by three living free floating aquatic macrophytes Salvinia auriculata, Pistia stratiotes, and Eicchornia crassipes was investigated in greenhouse. These plants were grown in hydroponic solutions supplied with non-toxic Cr3+ and Cr6+ chromium concentrations, performing six collections of nutrient media and plants in time from a batch system. The total chromium concentrations into Cr-doped hydroponic media and dry roots and aerial parts were assayed, by using the Synchrotron radiation X-ray fluorescence technique. The aquatic plant-based chromium removal data were described by using a nonstructural kinetic model, obtaining different bioaccumulation rate, ranging from 0.015 to 0.837 1 mg(-1) d(-1). The Cr3+ removal efficiency was about 90%, 50%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata, respectively; while it was rather different for Cr6+ one, with values about 50%, 70%, and 90% for the E. crassipes, P. stratiotes, and S. auriculata.