2 resultados para Drake, Francis, approximately 1540-1596
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
1. Litter decomposition recycles nutrients and causes large fluxes of carbon dioxide into the atmosphere. It is typically assumed that climate, litter quality and decomposer communities determine litter decay rates, yet few comparative studies have examined their relative contributions in tropical forests. 2. We used a short-term litterbag experiment to quantify the effects of litter quality, placement and mesofaunal exclusion on decomposition in 23 tropical forests in 14 countries. Annual precipitation varied among sites (760-5797 mm). At each site, two standard substrates (Raphia farinifera and Laurus nobilis) were decomposed in fine- and coarse-mesh litterbags both above and below ground for approximately 1 year. 3. Decomposition was rapid, with >95% mass loss within a year at most sites. Litter quality, placement and mesofaunal exclusion all independently affected decomposition, but the magnitude depended upon site. Both the average decomposition rate at each site and the ratio of above- to below-ground decay increased linearly with annual precipitation, explaining 60-65% of among-site variation. Excluding mesofauna had the largest impact on decomposition, reducing decomposition rates by half on average, but the magnitude of decrease was largely independent of climate. This suggests that the decomposer community might play an important role in explaining patterns of decomposition among sites. Which litter type decomposed fastest varied by site, but was not related to climate. 4. Synthesis. A key goal of ecology is to identify general patterns across ecological communities, as well as relevant site-specific details to understand local dynamics. Our pan-tropical study shows that certain aspects of decomposition, including average decomposition rates and the ratio of above- to below-ground decomposition are highly correlated with a simple climatic index: mean annual precipitation. However, we found no relationship between precipitation and effects of mesofaunal exclusion or litter type, suggesting that site-specific details may also be required to understand how these factors affect decomposition at local scales.
Resumo:
Purpose: The interference of electric fields (EF) with biological processes is an issue of considerable interest. No studies have as yet been reported on the combined effect of EF plus ionising radiation. Here we report studies on this combined effect using the prokaryote Microcystis panniformis, the eukaryote Candida albicans and human cells. Materials and methods: Cultures of Microcystis panniformis (Cyanobacteria) in glass tubes were irradiated with doses in the interval 0.5-5kGy, using a 60Co gamma source facility. Samples irradiated with 3kGy were exposed for 2h to a 20Vcm-1 static electric field and viable cells were enumerated. Cultures of Candida albicans were incubated at 36C for 20h, gamma-irradiated with doses from 1-4kGy, and submitted to an electric field of 180Vcm-1. Samples were examined under a fluorescence microscope and the number of unviable (red) and viable (apple green fluorescence) cells was determined. For crossing-check purposes, MRC5 strain of lung cells were irradiated with 2 Gy, exposed to an electric field of 1250 V/cm, incubated overnight with the anti-body anti-phospho-histone H2AX and examined under a fluorescence microscope to quantify nuclei with -H2AX foci. Results: In cells exposed to EF, death increased substantially compared to irradiation alone. In C. albicans we observed suppression of the DNA repair shoulder. The effect of EF in growth of M. panniformis was substantial; the number of surviving cells on day-2 after irradiation was 12 times greater than when an EF was applied. By the action of a static electric field on the irradiated MRC5 cells the number of nuclei with -H2AX foci increased 40%, approximately. Conclusions: Application of an EF following irradiation greatly increases cell death. The observation that the DNA repair shoulder in the survival curve of C. albicans is suppressed when cells are exposed to irradiation+EF suggests that EF likely inactivate cellular recovering processes. The result for the number of nuclei with -H2AX foci in MRC5 cells indicates that an EF interferes mostly in the DNA repair mechanisms. A molecular ad-hoc model is proposed.