1 resultado para Donne, John, 1572-1631.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Filtro por publicador
- Aberystwyth University Repository - Reino Unido (3)
- Adam Mickiewicz University Repository (3)
- Andina Digital - Repositorio UASB-Digital - Universidade Andina Simón Bolívar (3)
- Aquatic Commons (23)
- Archive of European Integration (2)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (4)
- Biblioteca Digital da Câmara dos Deputados (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (1)
- Biblioteca Digital de la Universidad Católica Argentina (7)
- Biblioteca Digital de Teses e Dissertações Eletrônicas da UERJ (6)
- Boston College Law School, Boston College (BC), United States (1)
- Boston University Digital Common (26)
- Brock University, Canada (173)
- CaltechTHESIS (1)
- Cambridge University Engineering Department Publications Database (1)
- CentAUR: Central Archive University of Reading - UK (54)
- Center for Jewish History Digital Collections (5)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (1)
- Comissão Econômica para a América Latina e o Caribe (CEPAL) (4)
- CUNY Academic Works (1)
- Dalarna University College Electronic Archive (3)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (2)
- Digital Archives@Colby (16)
- Digital Commons @ Winthrop University (4)
- DigitalCommons@University of Nebraska - Lincoln (1)
- DRUM (Digital Repository at the University of Maryland) (3)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Gallica, Bibliotheque Numerique - Bibliothèque nationale de France (French National Library) (BnF), France (105)
- Greenwich Academic Literature Archive - UK (1)
- Helda - Digital Repository of University of Helsinki (7)
- Indian Institute of Science - Bangalore - Índia (5)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (5)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (29)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (6)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (167)
- Queensland University of Technology - ePrints Archive (33)
- RDBU - Repositório Digital da Biblioteca da Unisinos (2)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (3)
- Repositório Científico do Instituto Politécnico de Lisboa - Portugal (1)
- Repositório digital da Fundação Getúlio Vargas - FGV (1)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade Estadual de São Paulo - UNESP (1)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (28)
- Research Open Access Repository of the University of East London. (1)
- Savoirs UdeS : plateforme de diffusion de la production intellectuelle de l’Université de Sherbrooke - Canada (1)
- School of Medicine, Washington University, United States (29)
- South Carolina State Documents Depository (34)
- Universidad Autónoma de Nuevo León, Mexico (4)
- Universidad del Rosario, Colombia (7)
- Universidade Federal do Pará (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (1)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (15)
- University of Michigan (62)
- University of Queensland eSpace - Australia (2)
- University of Southampton, United Kingdom (1)
- University of Washington (2)
- USA Library of Congress (1)
- WestminsterResearch - UK (1)
Resumo:
Scenarios for the emergence or bootstrap of a lexicon involve the repeated interaction between at least two agents who must reach a consensus on how to name N objects using H words. Here we consider minimal models of two types of learning algorithms: cross-situational learning, in which the individuals determine the meaning of a word by looking for something in common across all observed uses of that word, and supervised operant conditioning learning, in which there is strong feedback between individuals about the intended meaning of the words. Despite the stark differences between these learning schemes, we show that they yield the same communication accuracy in the limits of large N and H, which coincides with the result of the classical occupancy problem of randomly assigning N objects to H words.