283 resultados para Distributed lag model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Background: People with less education in Europe, Asia, and the United States are at higher risk of mortality associated with daily and longer-term air pollution exposure. We examined whether educational level modified associations between mortality and ambient particulate pollution (PM(10)) in Latin America, using several timescales. Methods: The study population included people who died during 1998-2002 in Mexico City, Mexico; Santiago, Chile; and Sao Paulo, Brazil. We fit city-specific robust Poisson regressions to daily deaths for nonexternal-cause mortality, and then stratified by age, sex, and educational attainment among adults older than age 21 years (none, some primary, some secondary, and high school degree or more). Predictor variables included a natural spline for temporal trend, linear PM(10) and apparent temperature at matching lags, and day-of-week indicators. We evaluated PM(10) for lags 0 and I day, and fit an unconstrained distributed lag model for cumulative 6-day effects. Results: The effects of a 10-mu g/m(3) increment in lag 1 PM(10) on all nonextemal-cause adult mortality were for Mexico City 0.39% (95% confidence interval = 0.131/-0.65%); Sao Paulo 1.04% (0.71%-1.38%); and for Santiago 0.61% (0.40%-0.83%. We found cumulative 6-day effects for adult mortality in Santiago (0.86% [0.48%-1.23%]) and Sao Paulo (1.38% [0.85%-1.91%]), but no consistent gradients by educational status. Conclusions: PM(10) had important short- and intermediate-term effects on mortality in these Latin American cities, but associations did not differ consistently by educational level.
Resumo:
Background: Patients with chronic obstructive pulmonary disease (COPD) can have recurrent disease exacerbations triggered by several factors, including air pollution. Visits to the emergency respiratory department can be a direct result of short-term exposure to air pollution. The aim of this study was to investigate the relationship between the daily number of COPD emergency department visits and the daily environmental air concentrations of PM(10), SO(2), NO(2), CO and O(3) in the City of Sao Paulo, Brazil. Methods: The sample data were collected between 2001 and 2003 and are categorised by gender and age. Generalised linear Poisson regression models were adopted to control for both short-and long-term seasonal changes as well as for temperature and relative humidity. The non-linear dependencies were controlled using a natural cubic spline function. Third-degree polynomial distributed lag models were adopted to estimate both lag structures and the cumulative effects of air pollutants. Results: PM(10) and SO(2) readings showed both acute and lagged effects on COPD emergency department visits. Interquartile range increases in their concentration (28.3 mg/m(3) and 7.8 mg/m(3), respectively) were associated with a cumulative 6-day increase of 19% and 16% in COPD admissions, respectively. An effect on women was observed at lag 0, and among the elderly the lag period was noted to be longer. Increases in CO concentration showed impacts in the female and elderly groups. NO(2) and O(3) presented mild effects on the elderly and in women, respectively. Conclusion: These results indicate that air pollution affects health in a gender-and age-specific manner and should be considered a relevant risk factor that exacerbates COPD in urban environments.
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
Background: Various neuroimaging studies, both structural and functional, have provided support for the proposal that a distributed brain network is likely to be the neural basis of intelligence. The theory of Distributed Intelligent Processing Systems (DIPS), first developed in the field of Artificial Intelligence, was proposed to adequately model distributed neural intelligent processing. In addition, the neural efficiency hypothesis suggests that individuals with higher intelligence display more focused cortical activation during cognitive performance, resulting in lower total brain activation when compared with individuals who have lower intelligence. This may be understood as a property of the DIPS. Methodology and Principal Findings: In our study, a new EEG brain mapping technique, based on the neural efficiency hypothesis and the notion of the brain as a Distributed Intelligence Processing System, was used to investigate the correlations between IQ evaluated with WAIS (Whechsler Adult Intelligence Scale) and WISC (Wechsler Intelligence Scale for Children), and the brain activity associated with visual and verbal processing, in order to test the validity of a distributed neural basis for intelligence. Conclusion: The present results support these claims and the neural efficiency hypothesis.
Resumo:
Background: In women with breast cancer submitted to neoadjuvant chemotherapy based in doxorubicin, tumor expression of groups of three genes (PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2) have classified them as responsive or resistant. We have investigated whether expression of these trios of genes could predict mammary carcinoma response in dogs and whether tumor slices, which maintain epithelial-mesenchymal interactions, could be used to evaluate drug response in vitro. Methods: Tumors from 38 dogs were sliced and cultured with or without doxorubicin 1 mu M for 24 h. Tumor cells were counted by two observers to establish a percentage variation in cell number, between slices. Based on these results, a reduction in cell number between treated and control samples >= 21.7%, arbitrarily classified samples, as drug responsive. Tumor expression of PRSS11, MTSS1, CLPTM1 and SMYD2, was evaluated by real time PCR. Relative expression results were then transformed to their natural logarithm values, which were spatially disposed according to the expression of trios of genes, comprising PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2. Fisher linear discrimination test was used to generate a separation plane between responsive and non-responsive tumors. Results: Culture of tumor slices for 24 h was feasible. Nine samples were considered responsive and 29 non-responsive to doxorubicin, considering the pre-established cut-off value of cell number reduction = 21.7%, between doxorubicin treated and control samples. Relative gene expression was evaluated and tumor samples were then spatially distributed according to the expression of the trios of genes: PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2. A separation plane was generated. However, no clear separation between responsive and non-responsive samples could be observed. Conclusion: Three-dimensional distribution of samples according to the expression of the trios of genes PRSS11, MTSS1, CLPTM1 and PRSS11, MTSS1, SMYD2 could not predict doxorubicin in vitro responsiveness. Short term culture of mammary gland cancer slices may be an interesting model to evaluate chemotherapy activity.
Resumo:
We describe an estimation technique for biomass burning emissions in South America based on a combination of remote-sensing fire products and field observations, the Brazilian Biomass Burning Emission Model (3BEM). For each fire pixel detected by remote sensing, the mass of the emitted tracer is calculated based on field observations of fire properties related to the type of vegetation burning. The burnt area is estimated from the instantaneous fire size retrieved by remote sensing, when available, or from statistical properties of the burn scars. The sources are then spatially and temporally distributed and assimilated daily by the Coupled Aerosol and Tracer Transport model to the Brazilian developments on the Regional Atmospheric Modeling System (CATT-BRAMS) in order to perform the prognosis of related tracer concentrations. Three other biomass burning inventories, including GFEDv2 and EDGAR, are simultaneously used to compare the emission strength in terms of the resultant tracer distribution. We also assess the effect of using the daily time resolution of fire emissions by including runs with monthly-averaged emissions. We evaluate the performance of the model using the different emission estimation techniques by comparing the model results with direct measurements of carbon monoxide both near-surface and airborne, as well as remote sensing derived products. The model results obtained using the 3BEM methodology of estimation introduced in this paper show relatively good agreement with the direct measurements and MOPITT data product, suggesting the reliability of the model at local to regional scales.
Resumo:
The existence of juxtaposed regions of distinct cultures in spite of the fact that people's beliefs have a tendency to become more similar to each other's as the individuals interact repeatedly is a puzzling phenomenon in the social sciences. Here we study an extreme version of the frequency-dependent bias model of social influence in which an individual adopts the opinion shared by the majority of the members of its extended neighborhood, which includes the individual itself. This is a variant of the majority-vote model in which the individual retains its opinion in case there is a tie among the neighbors' opinions. We assume that the individuals are fixed in the sites of a square lattice of linear size L and that they interact with their nearest neighbors only. Within a mean-field framework, we derive the equations of motion for the density of individuals adopting a particular opinion in the single-site and pair approximations. Although the single-site approximation predicts a single opinion domain that takes over the entire lattice, the pair approximation yields a qualitatively correct picture with the coexistence of different opinion domains and a strong dependence on the initial conditions. Extensive Monte Carlo simulations indicate the existence of a rich distribution of opinion domains or clusters, the number of which grows with L(2) whereas the size of the largest cluster grows with ln L(2). The analysis of the sizes of the opinion domains shows that they obey a power-law distribution for not too large sizes but that they are exponentially distributed in the limit of very large clusters. In addition, similarly to other well-known social influence model-Axelrod's model-we found that these opinion domains are unstable to the effect of a thermal-like noise.
Resumo:
Due to manufacturing or damage process, brittle materials present a large number of micro-cracks which are randomly distributed. The lifetime of these materials is governed by crack propagation under the applied mechanical and thermal loadings. In order to deal with these kinds of materials, the present work develops a boundary element method (BEM) model allowing for the analysis of multiple random crack propagation in plane structures. The adopted formulation is based on the dual BEM, for which singular and hyper-singular integral equations are used. An iterative scheme to predict the crack growth path and crack length increment is proposed. This scheme enables us to simulate the localization and coalescence phenomena, which are the main contribution of this paper. Considering the fracture mechanics approach, the displacement correlation technique is applied to evaluate the stress intensity factors. The propagation angle and the equivalent stress intensity factor are calculated using the theory of maximum circumferential stress. Examples of multi-fractured domains, loaded up to rupture, are considered to illustrate the applicability of the proposed method. (C) 2011 Elsevier Ltd. All rights reserved.
Resumo:
Vibration-based energy harvesting has been investigated by several researchers over the last decade. The goal in this research field is to power small electronic components by converting the waste vibration energy available in their environment into electrical energy. Recent literature shows that piezoelectric transduction has received the most attention for vibration-to-electricity conversion. In practice, cantilevered beams and plates with piezoceramic layers are employed as piezoelectric energy harvesters. The existing piezoelectric energy harvester models are beam-type lumped parameter, approximate distributed parameter and analytical distributed parameter solutions. However, aspect ratios of piezoelectric energy harvesters in several cases are plate-like and predicting the power output to general (symmetric and asymmetric) excitations requires a plate-type formulation which has not been covered in the energy harvesting literature. In this paper. an electromechanically coupled finite element (FE) plate model is presented for predicting the electrical power output of piezoelectric energy harvester plates. Generalized Hamilton`s principle for electroelastic bodies is reviewed and the FE model is derived based on the Kirchhoff plate assumptions as typical piezoelectric energy harvesters are thin structures. Presence of conductive electrodes is taken into account in the FE model. The predictions of the FE model are verified against the analytical solution for a unimorph cantilever and then against the experimental and analytical results of a bimorph cantilever with a tip mass reported in the literature. Finally, an optimization problem is solved where the aluminum wing spar of an unmanned air vehicle (UAV) is modified to obtain a generator spar by embedding piezoceramics for the maximum electrical power without exceeding a prescribed mass addition limit. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.
Resumo:
The TCP/IP architecture was consolidated as a standard to the distributed systems. However, there are several researches and discussions about alternatives to the evolution of this architecture and, in this study area, this work presents the Title Model to contribute with the application needs support by the cross layer ontology use and the horizontal addressing, in a next generation Internet. For a practical viewpoint, is showed the network cost reduction for the distributed programming example, in networks with layer 2 connectivity. To prove the title model enhancement, it is presented the network analysis performed for the message passing interface, sending a vector of integers and returning its sum. By this analysis, it is confirmed that the current proposal allows, in this environment, a reduction of 15,23% over the total network traffic, in bytes.
Resumo:
Leishmania (Viannia) shawl was recently characterized and few studies concerning modifications in cellular and humoral immune responses in experimental leishmaniasis have been conducted. In this work, immunopathological changes induced by L. shawl in chronically infected BALB/c mice were investigated. Infected BALB/c mice developed increased lesion size associated with strong inflammatory infiltrate diffusely distributed in the dermis, with highly infected macrophages. The humoral immune response was predominantly directed toward the IgG1 isotype. The functional activity of CD4(+) and CD8(+) T cells showed significantly increased TNF-alpha mRNA levels associated with reduced IFN-gamma expression by CD4(+) T cells and the double negative (dn) CD4CD8 cell subset. High IL-4 levels expressed by CD8(+) T cells and dnCD4CD8 and TGF-beta by CD4(+) and CD8(+) T cells were detected, while IL-10 was highly expressed by all three cell subpopulations. Taken together, these results show an evident imbalance between TNF-alpha and IFN-gamma that is unfavorable to amastigote replication control. Furthermore, L. shawi seems to regulate different cell populations to express deactivating cytokines to avoid its own destruction. This study indicates BALB/c mice as a potentially good experimental model for further studies on American cutaneous leishmaniosis caused by L. shawi. (C) 2010 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Time-lagged responses of biological variables to landscape modifications are widely recognized, but rarely considered in ecological studies. In order to test for the existence of time-lags in the response of trees, small mammals, birds and frogs to changes in fragment area and connectivity, we studied a fragmented and highly dynamic landscape in the Atlantic forest region. We also investigated the biological correlates associated with differential responses among taxonomic groups. Species richness and abundance for four taxonomic groups were measured in 21 secondary forest fragments during the same period (2000-2002), following a standardized protocol. Data analyses were based on power regressions and model selection procedures. The model inputs included present (2000) and past (1962, 1981) fragment areas and connectivity, as well as observed changes in these parameters. Although past landscape structure was particularly relevant for trees, all taxonomic groups (except small mammals) were affected by landscape dynamics, exhibiting a time-lagged response. Furthermore, fragment area was more important for species groups with lower dispersal capacity, while species with higher dispersal ability had stronger responses to connectivity measures. Although these secondary forest fragments still maintain a large fraction of their original biodiversity, the delay in biological response combined with high rates of deforestation and fast forest regeneration imply in a reduction in the average age of the forest. This also indicates that future species losses are likely, especially those that are more strictly-forest dwellers. Conservation actions should be implemented to reduce species extinction, to maintain old-growth forests and to favour the regeneration process. Our results demonstrate that landscape history can strongly affect the present distribution pattern of species in fragmented landscapes, and should be considered in conservation planning. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Several accounts put forth to explain the flash-lag effect (FLE) rely mainly on either spatial or temporal mechanisms. Here we investigated the relationship between these mechanisms by psychophysical and theoretical approaches. In a first experiment we assessed the magnitudes of the FLE and temporal-order judgments performed under identical visual stimulation. The results were interpreted by means of simulations of an artificial neural network, that wits also employed to make predictions concerning the F LE. The model predicted that a spatio-temporal mislocalisation would emerge from two, continuous and abrupt-onset, moving stimuli. Additionally, a straightforward prediction of the model revealed that the magnitude of this mislocalisation should be task-dependent, increasing when the use of the abrupt-onset moving stimulus switches from a temporal marker only to both temporal and spatial markers. Our findings confirmed the model`s predictions and point to an indissoluble interplay between spatial facilitation and processing delays in the FLE.
Resumo:
The evolution of commodity computing lead to the possibility of efficient usage of interconnected machines to solve computationally-intensive tasks, which were previously solvable only by using expensive supercomputers. This, however, required new methods for process scheduling and distribution, considering the network latency, communication cost, heterogeneous environments and distributed computing constraints. An efficient distribution of processes over such environments requires an adequate scheduling strategy, as the cost of inefficient process allocation is unacceptably high. Therefore, a knowledge and prediction of application behavior is essential to perform effective scheduling. In this paper, we overview the evolution of scheduling approaches, focusing on distributed environments. We also evaluate the current approaches for process behavior extraction and prediction, aiming at selecting an adequate technique for online prediction of application execution. Based on this evaluation, we propose a novel model for application behavior prediction, considering chaotic properties of such behavior and the automatic detection of critical execution points. The proposed model is applied and evaluated for process scheduling in cluster and grid computing environments. The obtained results demonstrate that prediction of the process behavior is essential for efficient scheduling in large-scale and heterogeneous distributed environments, outperforming conventional scheduling policies by a factor of 10, and even more in some cases. Furthermore, the proposed approach proves to be efficient for online predictions due to its low computational cost and good precision. (C) 2009 Elsevier B.V. All rights reserved.