63 resultados para Distributed Material Flow Control
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This research employs solid-state actuators for delay of flow separation seen in airfoils at low Reynolds numbers. The flow control technique investigated here is aimed for a variable camber airfoil that employs two active surfaces and a single four-bar (box) mechanism as the internal structure. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by a total of nine piezocomposite actuated clamped-free unimorph benders distributed in the spanwise direction. An electromechanical model is employed to design an actuator capable of high deformations at the desired frequency for lift improvement at post-stall angles. The optimum spanwise distribution of excitation for increasing lift coefficient is identified experimentally in the wind tunnel. A 3D (non-uniform) excitation distribution achieved higher lift enhancement in the post-stall region with lower power consumption when compared to the 2D (uniform) excitation distribution. A lift coefficient increase of 18.4% is achieved with the identified non-uniform excitation mode at the bender resonance frequency of 125 Hz, the flow velocity of 5 m/s and at the reduced frequency of 3.78. The maximum lift (Clmax) is increased 5.2% from the baseline. The total power consumption of the flow control technique is 639 mW(RMS).
Resumo:
The research presented here employs solid-state actuators for flow separation delay or for forced attachment of separated flow seen in airfoils at low Reynolds numbers. To reduce separation, periodic excitation to the flow around the leading edge of the airfoil is induced by Macro-Fiber Composite actuated clamped-free unimorph benders. An electromechanical model of the unimorph is briefly presented and parametric study is conducted to aid the design of a unimorph to output high deformation at a desired frequency. The optimum frequency and amplitude for lift improvement at post-stall angles are identified experimentally. Along with aerodynamic force and structural displacement measurements, helium bubble flow visualization is used to verify existing separated flow, and the attached flow induced by flow control. The lift enhancement induced by several flow control techniques is compared. A symmetric and non-uniform (3D) flow excitation results in the maximum lift enhancement at post-stall region at the lowest power consumption level. A maximum lift coefficient increase of 27.5% (in the post-stall region) is achieved at 125 Hz periodic excitation, with the 3D symmetric actuation mode at 5 m/s and the reduced frequency of 3.78. C(l,max) is increased 7.6% from the baseline.
Resumo:
Background: Organs from the so-called marginal donors have been used with a significant higher risk of primary non function than organs retrieved from the optimal donors. We investigated the early metabolic changes and blood flow redistribution in splanchnic territory in an experimental model that mimics marginal brain-dead (BD) donor. Material/Methods: Ten dogs (21.3 +/- 0.9 kg), were subjected to a brain death protocol induced by subdural balloon inflation and observed for 30 min thereafter without ally additional interventions. Mean arterial and intracranial pressures, heart rate, cardiac output (CO), portal vein and hepatic artery blood flows (PVBF and HABF, ultrasonic flowprobe), and O(2)-derived variables were evaluated. Results: An increase in arterial pressure, CO, PVBF and HABF was observed after BD induction. At the end, an intense hypotension with normalization in CO (3.0 +/- 0.2 VS. 2.8 +/- 2.8 L/min) and PVBF (687 +/- 114 vs. 623 +/- 130 ml/min) was observed, whereas HABF (277 33 vs. 134 28 ml/min, p<0.005) remained lower than baseline values. Conclusions: Despite severe hypotension induced by sudden increase of intracranial pressure, the systemic and splanchnic blood flows were partially preserved without signs of severe hypoperfusion (i.e. hyperlactatemia). Additionally, the HABF was mostly negatively affected in this model of marginal BD donor. Our data suggest that not only the cardiac output, but the intrinsic hepatic microcirculatory mechanism plays a role in the hepatic blood flow control after BD.
Resumo:
The aim of this study was to evaluate the quality of filling in main and lateral root canals performed with the McSpadden technique, regarding the time spent on the procedure and the type of gutta-percha employed. Fifty simulated root canals, made with six lateral canals placed two apiece in the cervical, middle and apical thirds of the root, were divided into 5 groups. Group A: McSpadden technique with conventional gutta-percha, performed with sufficient time for canal filling; Group B: McSpadden technique with conventional gutta-percha, performed in twice the mean time used in Group A; Group C: McSpadden technique with TP gutta-percha, performed with sufficient time for canal filling; Group D: McSpadden technique with TP gutta-percha, performed in twice the mean time used in Group C; Group E: lateral condensation technique. Images of the filled root canals were taken using a stereomicroscope and analyzed using the Leica QWIN Pro software for filling material flow, gutta-percha filling extension and sealer flow. Data were analyzed by analysis of variance (ANOVA) and Tukey test (p < 0.05). The best values of penetration in lateral canals in the middle third occurred in the groups where TP gutta-percha was used. However, in the apical third, group B showed the best values. Although a longer time of compactor use allows greater penetration of the filling material into the lateral canals, the presence of voids resulted in bad quality radiographic images, suggesting porosity. The best quality of filling material was observed in Group A (McSpadden technique with conventional Gutta-Percha, performed with sufficient time for root canal filling).
Resumo:
A new, simple approach for modeling and assessing the operation and response of the multiline voltage-source controller (VSC)-based flexible ac transmission system controllers, namely the generalized interline power-flow controller (GIPFC) and the interline power-flow controller (IPFC), is presented in this paper. The model and the analysis developed are based on the converters` power balance method which makes use of the d-q orthogonal coordinates to thereafter present a direct solution for these controllers through a quadratic equation. The main constraints and limitations that such devices present while controlling the two independent ac systems considered, will also be evaluated. In order to examine and validate the steady-state model initially proposed, a phase-shift VSC-based GIPFC was also built in the Alternate Transients Program program whose results are also included in this paper. Where applicable, a comparative evaluation between the GIPFC and the IPFC is also presented.
Resumo:
In this paper, the synthesis and structural characterization of a series of polyacrylamide hydrogels with different degrees of reticulation are reported. Although the Equilibrium Swelling Theory was recognized as a simple and reliable tool for the determination of structural hydrogels network parameters like equilibrium degree of swelling, cross-link ratio and mesh size, this is the first application of this methodology for polyacrylamide hydrogels. By changing the total monomer content in the synthesis solution (%T) from 5 to 30%, at a fixed value of cross-linker content in the total monomer amount (%C) of 5%, the final parameter obtained, the mesh size, can be tuned from 2 to 0.3 nm. It was also possible to change the mesh size (0.19-0.35) by varying %C from 5 to 12% (at %T = 20%). Scanning Electron Microscopy images for the most different formulations are shown and corroborate data obtained from the theory. (c) 2008 Elsevier Ltd. All rights reserved.
Resumo:
Distributed control systems consist of sensors, actuators and controllers, interconnected by communication networks and are characterized by a high number of concurrent process. This work presents a proposal for a procedure to model and analyze communication networks for distributed control systems in intelligent building. The approach considered for this purpose is based on the characterization of the control system as a discrete event system and application of coloured Petri net as a formal method for specification, analysis and verification of control solutions. With this approach, we develop the models that compose the communication networks for the control systems of intelligent building, which are considered the relationships between the various buildings systems. This procedure provides a structured development of models, facilitating the process of specifying the control algorithm. An application example is presented in order to illustrate the main features of this approach.
Resumo:
In this paper the continuous Verhulst dynamic model is used to synthesize a new distributed power control algorithm (DPCA) for use in direct sequence code division multiple access (DS-CDMA) systems. The Verhulst model was initially designed to describe the population growth of biological species under food and physical space restrictions. The discretization of the corresponding differential equation is accomplished via the Euler numeric integration (ENI) method. Analytical convergence conditions for the proposed DPCA are also established. Several properties of the proposed recursive algorithm, such as Euclidean distance from optimum vector after convergence, convergence speed, normalized mean squared error (NSE), average power consumption per user, performance under dynamics channels, and implementation complexity aspects, are analyzed through simulations. The simulation results are compared with two other DPCAs: the classic algorithm derived by Foschini and Miljanic and the sigmoidal of Uykan and Koivo. Under estimated errors conditions, the proposed DPCA exhibits smaller discrepancy from the optimum power vector solution and better convergence (under fixed and adaptive convergence factor) than the classic and sigmoidal DPCAs. (C) 2010 Elsevier GmbH. All rights reserved.
Resumo:
A simple method was optimized and validated for determination of ractopamine hydrochloride (RAC) in raw material and feed additives by HPLC for use in quality control in veterinary industries. The best-optimized conditions were a C8 column (250 x 4.6 mm id, 5.0 mu m particle size) at room temperature with acetonitrile-100 mM sodium acetate buffer (pH 5.0; 75 + 25, v/v) mobile phase at a flow rate of 1.0 mL/min and UV detection at 275 nm. With these conditions, the retention time of RAC was around 5.2 min, and standard curves were linear in the concentration range of 160-240 mu g/mL (correlation coefficient >= 0.999). Validation parameters, such as selectivity, linearity, limit of detection (ranged from 1.60 to 2.05 mu g/mL), limit of quantification (ranged from 4.26 to 6.84 mu g/mL), precision (relative standard deviation <= 1.87%), accuracy (ranged from 96.97 to 100.54%), and robustness, gave results within acceptable ranges. Therefore, the developed method can be successfully applied for the routine quality control analysis of raw material and feed additives.
Resumo:
Taking into account that atherosclerosis is a focal disease and high levels of plasma cholesterol are closely correlated with its pathogenesis, it is a challenge to explain how equal concentrations of cholesterol bathing the endothelium can produce local, rather than global, effects on arteries. The focal distribution of atherosclerotic lesions has been considered to be dependent, at least in part, on hydrodynamic factors. The present study was carried out to further test the hypothesis that these forces are an important localizing factor in rats feeding a hypercholesterolaemic diet and submitted to infra-diaphragmatic aortic constriction. These animals develop a normotensive prestenotic region with laminar blood flow that serves as control for a normotensive poststenotic region with turbulent blood flow. Our findings clearly demonstrated that the combination of turbulent blood flow and low wall shear stress (WSS) in the presence of hypercholesterolaemia and oxidative stress creates conditions to the formation of focally distributed incipient atherosclerotic lesions observed in the poststenotic segment. In contrast, only diffuse fatty streaks could be observed in the normotensive prestenotic segment with laminar blood flow and normal WSS in the presence of hypercholesterolaemia and oxidative stress. Although haemodynamic forces are not by themselves responsible for the pathogenesis of atherosclerosis, they prime the local vascular wall in which the lesion develop. Further studies are required to establish how haemodynamic forces are detected and transduced into chemical signalling by the cells of the artery wall and then converted into pathophysiologically relevant phenotypic changes.
Resumo:
BACKGROUND: Previous publications have documented the damage caused to red blood cells (RBCs) irradiated with X-rays produced by a linear accelerator and with gamma rays derived from a Cs-137 source. The biologic effects on RBCs of gamma rays from a Co-60 source, however, have not been characterized. STUDY DESIGN AND METHODS: This study investigated the effect of 3000 and 4000 cGy on the in vitro properties of RBCs preserved with preservative solution and irradiated with a cobalt teletherapy unit. A thermal device equipped with a data acquisition system was used to maintain and monitor the blood temperature during irradiation. The device was rotated at 2 r.p.m. in the irradiation beam by means of an automated system. The spatial distribution of the absorbed dose over the irradiated volume was obtained with phantom and thermoluminescent dosimeters (TLDs). Levels of Hb, K+, and Cl- were assessed by spectrophotometric techniques over a period of 45 days. The change in the topology of the RBC membrane was investigated by flow cytometry. RESULTS: Irradiation caused significant changes in the extracellular levels of K+ and Hb and in the organizational structure of the phospholipid bilayer of the RBC membrane. Blood temperature ranged from 2 to 4 degrees C during irradiation. Rotation at 2 r.p.m. distributed the dose homogeneously (92%-104%) and did not damage the RBCs. CONCLUSIONS: The method used to store the blood bags during irradiation guaranteed that all damage caused to the cells was exclusively due to the action of radiation at the doses applied. It was demonstrated that prolonged storage of Co-60-irradiated RBCs results in loss of membrane phospholipids asymmetry, exposing phosphatidylserine (PS) on the cells` surface with a time and dose dependence, which can reduce the in vivo recovery of these cells. A time- and dose-dependence effect on the extracellular K+ and plasma-free Hb levels was also observed. The magnitude of all these effects, however, seems not to be clinically important and can support the storage of irradiated RBC units for at last 28 days.
Resumo:
FUNDAMENTOS: O tratamento da hanseníase é definido pela classificação de pacientes em paucibacilares (PB) e multibacilares (MB). A OMS (Organização Mundial de Saúde) classifica os doentes de acordo com o número de lesões, mas Ridley-Jopling (R&J) utiliza também exames complementares, porém é de difícil utilização fora dos serviços de referência. Em 2003 foi desenvolvido um teste denominado ML-Flow, uma alternativa à sorologia por ELISA para auxiliar na classificação de pacientes em PB e MB e auxiliar na decisão terapêutica. OBJETIVOS: Observar a concordância entre o teste de ML-Flow e baciloscopia de linfa, exame já consagrado para detecção de MB. Analisar a utilidade do teste de ML-Flow em campo. MATERIAL E MÉTODOS: Estudo retrospectivo avaliando prontuário de 55 pacientes virgens de tratamento, diagnosticados como PB ou MB por R&J. Submetidos à baciloscopia e ao teste de ML-Flow. RESULTADOS: Nos MB, a baciloscopia foi positiva em 80% dos casos, o ML-flow foi positivo em 82,5%. Entre os PB, o ML-Flow foi positivo em 37,5% e a baciloscopia do esfregaço foi negativa em 100% dos casos. A concordância entre os resultados da baciloscopia do esfregaço e ML-Flow foi de 87,5%, kappa=0,59, p<0,001. CONCLUSÃO: Nenhum teste laboratorial é 100% sensível e específico para a correta classificação de todas as formas de hanseníase. O ML-Flow é um teste rápido, de fácil manuseio em campo, menos invasivo que a baciloscopia podendo ser útil para auxiliar na decisão terapêutica em locais de difícil acesso a serviços de referência.
Resumo:
This study investigated the influence of bioactive materials on the dentin surface whitened. MATERIAL AND METHODS: Three bovine teeth were shaped into three dentin wafers. Each wafer was then sectioned, into six dentin slices. One slice from each tooth was distributed into one of 6 groups: 1.CG = control group (distilled water); 2.WT = whitening treatment; 3.WT + MI Paste Plus, applied once a day; 4.WT + Relief ACP30, applied once a day for 30 mintes; 5.WT + Relief ACP60, applied once a day for 60 minutes; 6.WT + Biosilicate®, applied once a week. All groups were treated over 14 days. RESULTS: CG presented all dentinal tubules occluded by smear layer; WT group was observed all dentinal tubules opened. In the groups 3, 4 and 6, tubules were occluded. Group 5, dentinal tubules were completely occluded by mineral deposits. CONCLUSION: The use of bioactive materials immediately after whitening treatment can reduce or even avoid the demineralization effect of whitening and avoid exposing dentinal tubules.
Resumo:
A photometric procedure for the determination of ClO(-) in tap water employing a miniaturized multicommuted flow analysis setup and an LED-based photometer is described. The analytical procedure was implemented using leucocrystal violet (LCV; 4,4', 4 ''-methylidynetris (N, N-dimethylaniline), C(25)H(31)N(3)) as a chromogenic reagent. Solenoid micropumps employed for solutions propelling were assembled together with the photometer in order to compose a compact unit of small dimensions. After control variables optimization, the system was applied for the determination of ClO(-) in samples of tap water, and aiming accuracy assessment samples were also analyzed using an independent method. Applying the paired t-test between results obtained using both methods, no significant difference at the 95% confidence level was observed. Other useful features include low reagent consumption, 2.4 mu g of LCV per determination, a linear response ranging from 0.02 up to 2.0 mg L(-1) ClO(-), a relative standard deviation of 1.0% (n = 11) for samples containing 0.2 mg L(-1) ClO(-), a detection limit of 6.0 mu g L(-1) ClO(-), a sampling throughput of 84 determinations per hour, and a waste generation of 432 mu L per determination.
Resumo:
The feasibility of using constructed wetlands (CWs) for the mitigation of pesticide runoff has been studied in the last decade. However, a lack of related data was verified when subsurface flow constructed wetlands (SSF CWs) are considered for this purpose. In the present work, SSF CWs were submitted to continuous ametryn addition and evaluated during an I I-week period, with the aim of determining the feasibility of these systems for mitigation of contaminated water. Ametryn was not added to one CW cell in order to provide a control for the experiments. Monitoring of treatment performance was executed by standard water quality parameters, ametryn chromatography quantification and macrophyte (Typha latifolia L) nutritional and agronomic property analysis. Results indicated that 39% of the total initially added amount of ametryn was removed, transferred or transformed. Herbicide metabolism and mineralisation were carried out by chemical and biological mechanisms. No statistic differences were observed in nutritional contents found in the T. latifolia crops of the CWs after the experimental period. Moreover, the biomass production (one valuable source of renewable energy) was equal to 3.3 t.ha(-1) (dry matter) in wetland cells. It was concluded that constructed wetland systems are capable of mitigating water contaminated with ametryn, acting as buffer filters between the emission sources and the downstream superficial water bodies.