3 resultados para Distortional buckling
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
This paper describes the development of an implicit finite difference method for solving transient three-dimensional incompressible free surface flows. To reduce the CPU time of explicit low-Reynolds number calculations, we have combined a projection method with an implicit technique for treating the pressure on the free surface. The projection method is employed to uncouple the velocity and the pressure fields, allowing each variable to be solved separately. We employ the normal stress condition on the free surface to derive an implicit technique for calculating the pressure at the free surface. Numerical results demonstrate that this modification is essential for the construction of methods that are more stable than those provided by discretizing the free surface explicitly. In addition, we show that the proposed method can be applied to viscoelastic fluids. Numerical results include the simulation of jet buckling and extrudate swell for Reynolds numbers in the range [0.01, 0.5]. (C) 2008 Elsevier Inc. All rights reserved.
Resumo:
This work deals with the development of a numerical technique for simulating three-dimensional viscoelastic free surface flows using the PTT (Phan-Thien-Tanner) nonlinear constitutive equation. In particular, we are interested in flows possessing moving free surfaces. The equations describing the numerical technique are solved by the finite difference method on a staggered grid. The fluid is modelled by a Marker-and-Cell type method and an accurate representation of the fluid surface is employed. The full free surface stress conditions are considered. The PTT equation is solved by a high order method, which requires the calculation of the extra-stress tensor on the mesh contours. To validate the numerical technique developed in this work flow predictions for fully developed pipe flow are compared with an analytic solution from the literature. Then, results of complex free surface flows using the FIT equation such as the transient extrudate swell problem and a jet flowing onto a rigid plate are presented. An investigation of the effects of the parameters epsilon and xi on the extrudate swell and jet buckling problems is reported. (C) 2010 Elsevier B.V. All rights reserved.
Resumo:
This work presents a finite difference technique for simulating three-dimensional free surface flows governed by the Upper-Convected Maxwell (UCM) constitutive equation. A Marker-and-Cell approach is employed to represent the fluid free surface and formulations for calculating the non-Newtonian stress tensor on solid boundaries are developed. The complete free surface stress conditions are employed. The momentum equation is solved by an implicit technique while the UCM constitutive equation is integrated by the explicit Euler method. The resulting equations are solved by the finite difference method on a 3D-staggered grid. By using an exact solution for fully developed flow inside a pipe, validation and convergence results are provided. Numerical results include the simulation of the transient extrudate swell and the comparison between jet buckling of UCM and Newtonian fluids.