54 resultados para Dissolution kinetics
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Sodium diclofenac (SD) release from dosage forms has been studied under different conditions. However, no dissolution method that is discriminatory enough to reflect slight changes in formulation or manufacturing process, and which could be effectively correlated with the biological properties of the dosage form, has been reported. This study sought to develop three different formulae of SD-containing matrix tablets and to determine the effect of agitation speed in its dissolution profiles. F1, F2 and F3 formulations were developed using hypromellose (10, 20 and 30%, respectively for F1, F2 and F3) and other conventional excipients. Dissolution tests were carried out in phosphate buffer pH 6.8 at 37 degrees C using apparatus 11 at 50, 75 or 100 rpm. Dissolution efficiency (DE), T(50) and T(90) were determined and plotted as functions of the variables agitation speed and hypromellose concentration. Regarding DE, F2 showed more sensitivity to variations in agitation speed than F1 and F3. Increasing hypromellose concentration reduced DE values, independent of agitation speed. Analysis of T(50) and T(90) suggests that F1 is less sensitive to variations in agitation speed than F2 and F3. Most discriminatory dissolution conditions were observed at 50 rpm. Results suggest that the comparison of dissolution performance of SD matrix tablets should take into account polymer concentration and agitation conditions. (C) 2009 Published by Elsevier B.V.
Resumo:
The purpose of this paper was to produce controlled-release matrices with 120 mg of propranolol hydrochloride (PHCl) employing hydroxypropyl methylcellulose (HPMC, Methocel (R) K100) as the gel forming barrier. Although this class of polymers has been commonly used for direct compression, with the intent of use reduced polymer concentrations to achieve controlled drug release, in this study tablets were produced by the wet granulation process. HPMC percentages ranged from 15-34 % and both soluble and non soluble diluents were tested in the 10 proposed tablet compositions. Dissolution testing of matrices was performed over a 12 h period in 1.2 pH medium (the first 2 h) and in pH 6.8 (10 h). Dissolution kinetic analysis was performed by applying Zero-order, First-order and Higuchi models with the aim of elucidating the drug release mechanism. All physical-chemical characteristics such as average weight, friability, hardness, diameter, height, and drug content were in accordance to the pharmacopeial specifications. Taking into account that PHCl is a very soluble drug, low concentrations (15 %) of HPMC were sufficient to reduce the drug release and to promote controlled release of PHCl, presenting good dissolution efficiencies, between 50 % and 63 %. The Higuchi model has presented the best fit to the 15 % HPMC formulations, indicating that the main release mechanism was diffusion. It could be concluded that the application of the wet granulation method reduced matrices erosion and promoted controlled release of the drug at low HPMC percentages.
Resumo:
MgO based refractory castables draw wide technological interest because they have the versatility and installation advantages of monolithic refractories with intrinsic MgO properties, such as high refractoriness and resistance to basic slag corrosion. Nevertheless, MgO easily reacts with water to produce Mg(OH)(2), which is followed by a large volumetric expansion, limiting its application in refractory castables. In order to develop solutions to minimize this effect, a better understanding of the main variables involved in this reaction is required. In this work, the influence of temperature, as well as the impact of the chemical equilibrium shifting (known as the common-ion effect), on MgO hydration was evaluated. Ionic conductivity measurements at different temperatures showed that the MgO hydration reaction is accelerated with increasing temperature. Additionally, different compounds were added to evaluate their influence on the reaction rate. Among them, CaCl(2) delayed the reaction, whereas KOH showed an opposite behavior. MgCl(2) and MgSO(4) presented similar results and two other distinct effects, reaction delay and acceleration, which depended on their concentration in the suspensions. The results were evaluated by considering the kinetics and the thermodynamics of the reaction, and the mechanical damages in the samples that was caused by the hydration reaction. (C) 2009 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
The effects of alkali treatment on the structural characteristics of cotton linters and sisal cellulose samples have been studied. Mercerization results in a decrease in the indices of crystallinity and the degrees of polymerization, and an increase in the alpha-cellulose contents of the samples. The relevance of the structural properties of cellulose to its dissolution is probed by studying the kinetics of cellulose decrystallization, prior to its solubilization in LiCl/N,N-dimethylacetamide (DMAc). Our data show that the decrystallization rate constants and activation parameters are only slightly dependent on the physico-chemical properties of the starting celluloses. This multi-step reaction is accompanied by a small enthalpy and large, negative, entropy of activation. These results are analyzed in terms of the interactions within the biopolymer chains during decrystallization, as well as those between the two ions of the electrolyte and both DMAc and cellulose.
Resumo:
The enzyme purine nucleoside phosphorylase from Schistosoma mansoni (SmPNP) is an attractive molecular target for the development of novel drugs against schistosomiasis, a neglected tropical disease that affects about 200 million people worldwide. In the present work, enzyme kinetic studies were carried out in order to determine the potency and mechanism of inhibition of a series of SmPNP inhibitors. In addition to the biochemical investigations, crystallographic and molecular modeling studies revealed important molecular features for binding affinity towards the target enzyme, leading to the development of structure-activity relationships (SAR).
Resumo:
The photocatalytic degradation of phenol in aqueous suspensions of TiO2 under different salt concentrations in an annular reactor has been investigated. In all cases, complete removal of phenol and mineralization degrees above 90% were achieved. The reactor operational parameters were optimized and its hydrodynamics characterized in order to couple mass balance equations with kinetic ones. The photodegradation of the organics followed a Langmuir-Hinshelwood-Hougen-Watson lumped kinetics. From GC/MS analyses, several intermediates formed during oxidation have been identified. The main ones were catechol, hydroquinone, and 3-phenyl-2-propenal, in this order. The formation of negligible concentrations of 4-chlorophenol was observed only in high salinity medium. Acute toxicity was determined by using Artemia sp. as the test organism, which indicated that intermediate products were all less toxic than phenol and a significant abatement of the overall toxicity was accomplished, regardless of the salt concentration.
Resumo:
The thermal behavior of two polymorphic forms of rifampicin was studied by DSC and TG/DTG. The thermoanalytical results clearly showed the differences between the two crystalline forms. Polymorph I was the most thermally stable form, the DSC curve showed no fusion for this species and the thermal decomposition process occurred around 245 ºC. The DSC curve of polymorph II showed two consecutive events, an endothermic event (Tpeak = 193.9 ºC) and one exothermic event (Tpeak = 209.4 ºC), due to a melting process followed by recrystallization, which was attributed to the conversion of form II to form I. Isothermal and non-isothermal thermogravimetric methods were used to determine the kinetic parameters of the thermal decomposition process. For non-isothermal experiments, the activation energy (Ea) was derived from the plot of Log β vs 1/T, yielding values for polymorph form I and II of 154 and 123 kJ mol-1, respectively. In the isothermal experiments, the Ea was obtained from the plot of lnt vs 1/T at a constant conversion level. The mean values found for form I and form II were 137 and 144 kJ mol-1, respectively.
Resumo:
Background: Subclinical hypothyroidism (SCH) has been associated with atherosclerosis, but the abnormalities in plasma lipids that can contribute to atherogenesis are not prominent. The aim of this study was to test the hypothesis that patients with normocholesterolemic, normotriglyceridemic SCH display abnormalities in plasma lipid metabolism not detected in routine laboratory tests including abnormalities in the intravascular metabolism of triglyceride-rich lipoproteins, lipid transfers to high-density lipoprotein (HDL), and paraoxonase 1 activity. The impact of levothyroxine (LT4) treatment and euthyroidism in these parameters was also tested. Methods: The study included 12 SCH women and 10 matched controls. Plasma kinetics of an artificial triglyceride-rich emulsion labeled with radioactive triglycerides and cholesteryl esters as well as in vitro transfer of four lipids from an artificial donor nanoemulsion to HDL were determined at baseline in both groups and after 4 months of euthyroidism in the SCH group. Results: Fractional clearance rates of triglycerides (SCH 0.035 +/- 0.016 min(-1), controls 0.029 +/- 0.013 min(-1), p=0.336) and cholesteryl esters (SCH 0.009 +/- 0.007 min(-1), controls 0.009 +/- 0.009 min(-1), p=0.906) were equal in SCH and controls and were unchanged by LT4 treatment and euthyroidism in patients with SCH, suggesting that lipolysis and remnant removal of triglyceride-rich lipoproteins were normal. Transfer of triglycerides to HDL (SCH 3.6 +/- 0.48%, controls 4.7 +/- 0.63%, p=0.001) and phospholipids (SCH 16.2 +/- 3.58%, controls 21.2 +/- 3.32%, p=0.004) was reduced when compared with controls. After LT4 treatment, transfers increased and achieved normal values. Transfer of free and esterified cholesterol to HDL, HDL particle size, and paraoxonase 1 activity were similar to controls and were unchanged by treatment. Conclusions: Although intravascular metabolism of triglyceride-rich lipoproteins was normal, patients with SCH showed abnormalities in HDL metabolism that were reversed by LT4 treatment and achievement of euthyroidism.
Resumo:
Ion channels are pores formed by proteins and responsible for carrying ion fluxes through cellular membranes. The ion channels can assume conformational states thereby controlling ion flow. Physically, the conformational transitions from one state to another are associated with energy barriers between them and are dependent on stimulus, such as, electrical field, ligands, second messengers, etc. Several models have been proposed to describe the kinetics of ion channels. The classical Markovian model assumes that a future transition is independent of the time that the ion channel stayed in a previous state. Others models as the fractal and the chaotic assume that the rate of transitions between the states depend on the time that the ionic channel stayed in a previous state. For the calcium activated potassium channels of Leydig cells the R/S Hurst analysis has indicated that the channels are long-term correlated with a Hurst coefficient H around 0.7, showing a persistent memory in this kinetic. Here, we applied the R/S analysis to the opening and closing dwell time series obtained from simulated data from a chaotic model proposed by L. Liebovitch and T. Toth [J. Theor. Biol. 148, 243 (1991)] and we show that this chaotic model or any model that treats the set of channel openings and closings as independent events is inadequate to describe the long-term correlation (memory) already described for the experimental data. (C) 2008 American Institute of Physics.
Resumo:
The problem of spectra formation in hydrodynamic approach to A + A collisions is considered within the Boltzmann equations. It is shown analytically and illustrated by numerical calculations that the particle momentum spectra can be presented in the Cooper-R-ye form despite freeze-out is not sharp and has the finite temporal width. The latter is equal to the inverse of the particle collision rate at points (t(sigma) (r, p), r) of the maximal emission at a fixed momentum p. The set of these points forms the hypersurfaces t(sigma)(r,p) which strongly depend on the values of p and typically do not enclose completely the initially dense matter. This is an important difference from the standard Cooper-Frye prescription (CFp), with a common freeze-out hypersurface for all p, that affects significantly the predicted spectra. Also, the well known problem of CFp as for negative contributions to the spectra from non-space-like parts of the freeze-out hypersurface is naturally eliminated in this improved prescription.
Resumo:
Despite the fact that the majority of the catalytic electro-oxidation of small organic molecules presents oscillatory kinetics under certain conditions, there are few systematic studies concerning the influence of experimental parameters on the oscillatory dynamics. Of the studies available, most are devoted to C1 molecules and just some scattered data are available for C2 molecules. We present in this work a comprehensive study of the electro-oxidation of ethylene glycol on polycrystalline platinum surfaces and in alkaline media. The system was studied by means of electrochemical impedance spectroscopy, cyclic voltammetry, and chronoamperometry, and the impact of parameters such as applied current, ethylene glycol concentration, and temperature were investigated. As in the case of other parent systems, the instabilities in this system were associated with a hidden negative differential resistance, as identified by impedance data. Very rich and robust dynamics were observed, including the presence of harmonic and mixed mode oscillations and chaotic states, in some parameter region. Oscillation frequencies of about 16 Hz characterized the fastest oscillations ever reported for the electro-oxidation of small organic molecules. Those high frequencies were strongly influenced by the electrolyte pH and far less affected by the EG concentration. The system was regularly dependent on temperature under voltammetric conditions but rather independent within the oscillatory regime.
Resumo:
Kinetics modelling was used to study the effects of different dietary phosphorus (P) levels on P metabolism in young sheep. An experiment was conducted with 12 Santa Ines lambs receiving a basal diet of a hay-concentrate mixture. Different amounts of dicalcium phosphate were added to the basal diet, to give the following treatments levels of 0, 1.5, 3 and 4.5 g/animal/day. The isotopic dilution technique (32 p) was used for analyze four compartments: gastrointestinal tract, plasma, bone and soft tissues (liver, heart, kidney and muscle), as well as nutrient flows between them. All P flows showed a positive linear or exponential relationship with P intake. Both incorporation and reabsorption in bone and soft tissue increased with increasing P levels in the diet, with positive retention above 3 g/day. On the 4.5g P/day treatment, reduced P absorption and increased P in the faeces from dietary origin was noted. Three g/day of P treatment was sufficient to meet soft tissue requirements for young sheep. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The aim of this study was to determine if the carbohydrate (CHO) availability alters the rate of increase in the rating of perceived exertion (RPE) during high intensity exercise and whether this would be associated with physiological changes. Six males performed high intensity exercise after 48 h of controlled, high CHO (80%) and low CHO (10%) diets. Time to exhaustion was lower in the low compared to high CHO diet. The rate of increase in RPE was greater and the VO(2) slow component was lower in the low CHO diet than in the control. There was no significant condition effect for cortisol, insulin, pH, plasma glucose, potassium, or lactate concentrations. Multiple linear regression indicated that the total amplitude of VO(2) and perceived muscle strain accounted for the greatest variance in the rate of increase in RPE. These results suggest that cardiorespiratory variables and muscle strain are important afferent signals from the periphery for the RPE calculations.
Resumo:
Nyvlt method Was used to determine the kinetic parameters of commercial xylitol in ethanol:water (50:50 %w/w) Solution by batch cooling crystallization. The kinetic exponents (n, g and in) and the system kinetic constant (B(N)) were determined. Model experiments were carried Out in order to verify the combined effects of saturation temperatures (40, 50 and 60 degrees C) and cooling rates (0.10, 0.25 and 0.50 degrees C/min) on these parameters. The fitting between experimental and Calculated crystal sizes has 11.30% mean deviation. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
Spent sulfite pulping liquor (SSL) contains lignin, which is present as lignosulfonate, and hemicelluloses that are present as hydrolyzed carbohydrates. To reduce the biological oxygen demand of SSL associated with dissolved sugars, we studied the capacity of Pichia stipitis FPL-YS30 (xyl3 Delta) to convert these sugars into useful products. FPL-YS30 produces a negligible amount of ethanol while converting xylose into xylitol. This work describes the xylose fermentation kinetics of yeast strain P.stipitis FPL-YS30. Yeast was grown in rich medium supplemented with different carbon sources: glucose, xylose, or ammonia-base SSL. The SSL and glucose-acclimatized cells showed similar maximum specific growth rates (0.146 h(-1)). The highest xylose consumption at the beginning of the fermentation process occurred using cells precultivated in xylose, which showed relatively high specific activity of glucose-6-phosphate dehydrogenase (EC 1.1.1.49). However, the maximum specific rates of xylose consumption (0.19 g(xylose)/g(cel) h) and xylitol production (0.059 g(xylitol)/g(cel) h) were obtained with cells acclimatized in glucose, in which the ratio between xylose reductase (EC 1.1.1.21) and xylitol dehydrogenase (EC 1.1.1.9) was kept at higher level (0.82). In this case, xylitol production (31.6 g/l) was 19 and 8% higher than in SSL and xylose-acclimatized cells, respectively. Maximum glycerol (6.26 g/l) and arabitol (0.206 g/l) production were obtained using SSL and xylose-acclimatized cells, respectively. The medium composition used for the yeast precultivation directly reflected their xylose fermentation performance. The SSL could be used as a carbon source for cell production. However, the inoculum condition to obtain a high cell concentration in SSL needs to be optimized.