20 resultados para Dispersal flight
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)
Resumo:
Functional wing polymorphism is commonly observed it) insects, and it may confer an important adaptive value to populations that bear this trait, because it allows dispersal and the location to more favorable habitats for their survival and reproduction. According to the oogenesis-flight syndrome theory, such wing polymorphism may imply differences in the locomotion Capacity of individuals, which is a factor induced by adverse environmental conditions during muscle development in immatures. Scaptocoris carvalhoi Becker (Hemiptera: Cydnidae) is an important agriculture pest in Brazil, and it has burrowing habits. The adults swarm in the beginning of the rainy season after a prolonged drought period in the Brazilian cerrado region. In these swarms, part of the population leaves the soil, performing long flights until locations with more abundant vegetation. In this study, we characterized wing polymorphism in S. carvalhoi, this being the first description in a species of Cydnidae. Brachypterous and macropterous males and females were observed, which showed positive and significant correlations between body length and hindwing length. Macropterous individuals demonstrated greater locomotion capacity than brachypterous individuals. In addition, only long-winged adults could fly, showing wing mobility and flight reaction. The increased number of macropterous individuals inside the soil during the swarming season and in the beginning of the rainy period suggests that wing polymorphism in this population occurs in seasonal cycles and that factors related to the scarcity of rains influence the development of immatures and the formation of polymorphic adults.
Resumo:
The influence of the golden lion tamarin (Leontopithecus rosalia) as a seed disperser was studied by monitoring two groups of tamarins from December 1998 to December 2000 (871.9 hours of observations) in a forest fragment in south-east Brazil. The tamarins consumed fruits of 57 species from at least 17 families. They ingested the seeds of 39 species, and 23 of these were put to germinate in the laboratory and/or in the field. L. rosalia is a legitimate seed disperser because the seeds of all species tested germinated after ingestion, albeit some in low percentages. These primates do not show a consistent effect in final seed germination, because they benefit some species while damaging others. Feces were examined for seeds that had been preyed upon or digested.
Resumo:
The dispersal and survival of the phlebotomines Nyssomyia intermedia and Nyssomyia neivai (both implicated as vectors of the cutaneous leishmaniasis agent) in an endemic area was investigated using a capture-mark-release technique in five experiments from August-December 2003 in municipality of Iporanga, state of São Paulo, Brazil. A total of 1,749 males and 1,262 females of Ny. intermedia and 915 males and 411 females of Ny. neivai were marked and released during the five experiments. Recapture attempts were made using automatic light traps, aspiration in natural resting places and domestic animal shelters and Shannon traps. A total of 153 specimens (3.48%) were recaptured: 2.59% (78/3,011) for Ny. intermedia and 5.35% (71/1,326) for Ny. neivai. Both species were recaptured up to 144 h post-release, with the larger part of them recaptured within 48 h. The median dispersion distances for Ny. intermedia and Ny. neivai, respectively, were 109 m and 100 m. The greatest dispersal range of Ny. intermedia was 180 m, while for Ny. neivai one female was recaptured in a pasture at 250 m and another in a pigsty at 520 m, showing a tendency to disperse to more open areas. The daily survival rates calculated based on regressions of the numbers of marked insects recaptured on the six successive days after release were 0.746 for males and 0.575 for females of Ny. intermedia and 0.649 for both sexes of Ny. neivai. The size of the populations in the five months ranged from 8,332-725,085 for Ny. intermedia males, 2,193-104,490 for Ny. intermedia females, 1,687-350,122 for Ny. neivai males and 254-49,705 for Ny. neivai females.
Resumo:
Mutualistic networks are crucial to the maintenance of ecosystem services. Unfortunately, what we know about seed dispersal networks is based only on bird-fruit interactions. Therefore, we aimed at filling part of this gap by investigating bat-fruit networks. It is known from population studies that: (i) some bat species depend more on fruits than others, and (ii) that some specialized frugivorous bats prefer particular plant genera. We tested whether those preferences affected the structure and robustness of the whole network and the functional roles of species. Nine bat-fruit datasets from the literature were analyzed and all networks showed lower complementary specialization (H(2)' = 0.3760.10, mean 6 SD) and similar nestedness (NODF = 0.5660.12) than pollination networks. All networks were modular (M=0.32 +/- 0.07), and had on average four cohesive subgroups (modules) of tightly connected bats and plants. The composition of those modules followed the genus-genus associations observed at population level (Artibeus-Ficus, Carollia-Piper, and Sturnira-Solanum), although a few of those plant genera were dispersed also by other bats. Bat-fruit networks showed high robustness to simulated cumulative removals of both bats (R = 0.55 +/- 0.10) and plants (R = 0.68 +/- 0.09). Primary frugivores interacted with a larger proportion of the plants available and also occupied more central positions; furthermore, their extinction caused larger changes in network structure. We conclude that bat-fruit networks are highly cohesive and robust mutualistic systems, in which redundancy is high within modules, although modules are complementary to each other. Dietary specialization seems to be an important structuring factor that affects the topology, the guild structure and functional roles in bat-fruit networks.
Resumo:
It has been suggested that dispersal of seeds of Coussapoa asperifolia magnifolia could have endozoochoric dispersal by frugivorous birds and monkeys because the fruits are red when ripe, or exozoochoric dispersal, because the exocarp is mucilaginous and sticky. However, our field observations showed only stingless bees collecting the exocarp with seeds of C. asperifolia magnifolia, which are used for building and repairing their nests, from which the plants sprout. This paper aimed to determine the fruit chemical composition, since we postulated that C. asperifolia magnifolia is neither consumed by birds nor monkeys due to being very sticky and apparently resinous. Apolar extract analyses revealed the fruits are not resinous but extremely rich in waxes ( mainly esterified triglycerides), and polar extract analyses revealed the sugar content to be close to the sensorial minimum level. This probably accounts for why only stingless bees are seen visiting fruits and dispersing seeds.
Resumo:
Commercial passenger flights have been increasing around the world. The effect of these flights on health is unclear. Venous thromboembolism has been noted after recent long-distance airplane flight, even in the absence of other risk factors. Hypoxia caused by the low ambient pressure during flights could contribute, and individuals with obstructive sleep apnea may be particularly vulnerable. The association between the effects of long airplane travel and sleep-disordered breathing deserves further study. (C) 2008 Elsevier B.V. All rights reserved.
Resumo:
The purpose of this study is to apply robust inverse dynamics control for a six-degree-of-freedom flight simulator motion system. From an implementation viewpoint, simplification of the inverse dynamics control law is introduced by assuming control law matrices as constants. The robust control strategy is applied in the outer loop of the inverse dynamic control to counteract the effects of imperfect compensation due this simplification. The control strategy is designed using the Lyapunov stability theory. Forward and inverse kinematics and a full dynamic model of a six-degree-of-freedom motion base driven by electromechanical actuators are briefly presented. A describing function, acceleration step response and some maneuvers computed from the washout filter were used to evaluate the performance of the controllers.
Resumo:
In an energy perspective of cost-reduction and configuration-optimization, it becomes necessary to develop and use advanced tools for the analysis, design and improvement of energy conversion systems. In the aeronautical industry, such trend is fundamental since this industry has evolved to design extremely complex aircrafts, with highly integrated systems, requiring more information in order to evaluate the whole system. The aim of this paper is to present an exergy-based analysis as to evaluate the global performance of a typical turbofan engine and its components. The study presents values for exergy efficiency over the whole flight cycle, critical equipment and flight phases considering exergy destruction and estimating internal and exhaust flow costs. (C) 2009 Elsevier Ltd. All rights reserved.
Resumo:
Guignardia citricarpa, the causal agent of citrus black spot, forms airborne ascospores on decomposing citrus leaves and water-spread conidia on fruits, leaves and twigs. The spatial pattern of diseased fruit in citrus tree canopies was used to assess the importance of ascospores and conidia in citrus black spot epidemics in Sao Paulo State, Brazil. The aggregation of diseased fruit in the citrus tree canopy was quantified by the binomial dispersion index (D) and the binary form of Taylor`s Power Law for 303 trees in six groves. D was significantly greater than 1 in 251 trees. The intercept of the regression line of Taylor`s Power Law was significantly greater than 0 and the slope was not different from 1, implying that diseased fruit was aggregated in the canopy independent of disease incidence. Disease incidence (p) and severity (S) were assessed in 2875 citrus trees. The incidence-severity relationship was described (R-2 = 88.7%) by the model ln(S) = ln(a) + bCLL(p) where CLL = complementary log-log transformation. The high severity at low incidence observed in many cases is also indicative of low distance spread of G. citricarpa spores. For the same level of disease incidence, some trees had most of the diseased fruit with many lesions and high disease severity, whereas other trees had most of the fruit with few lesions and low disease severity. Aggregation of diseased fruit in the trees suggests that splash-dispersed conidia have an important role in increasing the disease in citrus trees in Brazil.
Resumo:
Mimetic seeds simulate the appearance of fleshy fruits and arilled seeds without producing nutritive tissues as a reward for seed dispersers. In this strategy of seed dispersal, seeds may remain attached to the mother plant for long periods after maturity, increasing their availability to naive seed dispersers. The hypothesis that seed coat impermeability in many tropical Fabaceae with mimetic seeds serves as an exaptation to protect the seeds from deterioration and rotting while awaiting dispersal was investigated. Seed coat impermeability was evaluated in five mimetic-seeded species of tropical Fabaceae in south-eastern Brazil (Abarema langsdorffii, Abrus precatorius, Adenanthera pavonina, Erythrina velutina and Ormosia arborea) and in Erythrina speciosa, a `basal` species in its genus, which has monochromatic brown seeds and no mimetic displays. Seed hardness was evaluated as a defence against accelerated ageing (humid chamber at 41 degrees C for 144 h). Seed development and physiological potential of O. arborea was evaluated and the effect of holding mature seeds in pods on the mother plant in the field for a period of 1 year under humid tropical conditions was compared with seeds stored under controlled conditions (15 degrees C and 40 % relative air humidity). All five mimetic-seeded species, and E. speciosa, showed strong coat impermeability, which protected the seeds against deterioration in accelerated ageing. Most O. arborea seeds only became dormant 2 months after pod dehiscence. Germination of seeds after 1 year on the plant in a humid tropical climate was 56 %, compared with 80 % for seeds stored in controlled conditions (15 degrees C, 45 % relative humidity). Seedling shoot length after 1 year did not differ between seed sources. Dormancy acts in mimetic-seeded species as an exaptation to reduce seed deterioration, allowing an increase in their effective dispersal period and mitigating the losses incurred by low removal rates by naive avian frugivores.
Resumo:
Bees generate thoracic vibrations with their indirect flight muscles in various behavioural contexts. The main frequency component of non-flight vibrations, during which the wings are usually folded over the abdomen, is higher than that of thoracic vibrations that drive the wing movements for flight. So far, this has been concluded from an increase in natural frequency of the oscillating system in association with the wing adduction. In the present study, we measured the thoracic oscillations in stingless bees during stationary flight and during two types of non-flight behaviour, annoyance buzzing and forager communication, using laser vibrometry. As expected, the flight vibrations met all tested assumptions for resonant oscillations: slow build-up and decay of amplitude; increased frequency following reduction of the inertial load; and decreased frequency following an increase of the mass of the oscillating system. Resonances, however, do not play a significant role in the generation of non-flight vibrations. The strong decrease in main frequency at the end of the pulses indicates that these were driven at a frequency higher than the natural frequency of the system. Despite significant differences regarding the main frequency components and their oscillation amplitudes, the mechanism of generation is apparently similar in annoyance buzzing and forager vibrations. Both types of non-flight vibration induced oscillations of the wings and the legs in a similar way. Since these body parts transform thoracic oscillations into airborne sounds and substrate vibrations, annoyance buzzing can also be used to study mechanisms of signal generation and transmission potentially relevant in forager communication under controlled conditions.
Resumo:
Ectotherm antipredator behaviour might be strongly affected both by body temperature and size: when environmental temperatures do not favour maximal locomotor performance, large individuals may confront predators, whereas small animals may flee, simply because they have no other option. However, integration of body size and temperature effects is rarely approached in the study of antipredator behaviour in vertebrate ectotherms. In the present study we investigated whether temperature affects antipredator responses of tegu lizards, Tupinambis merianae, with distinct body sizes, testing the hypothesis that small tegus (juveniles) run away from predators regardless of the environmental temperature, because defensive aggression may not be an effective predator deterrent, whereas adults, which are larger, use aggressive defence at low temperatures, when running performance might be suboptimal. We recorded responses of juvenile (small) and adult (large) tegu lizards to a simulated predatory attack at five environmental temperatures in the laboratory. Most differences between the two size classes were observed at low temperatures: large tegus were more aggressive overall than were small tegus at all temperatures tested, but at lower temperatures, the small lizards often used escape responses whereas the large ones either adopted a defensive posture or remained inactive. These results provide strong evidence that body size and temperature affect the antipredator responses of vertebrate ectotherms. We discuss the complex and intricate network of evolutionary and ecological parameters that are likely to be involved in the evolution of such interactions. (C) 2009 The Association for the Study of Animal Behaviour. Published by Elsevier Ltd. All rights reserved.
Resumo:
Previous studies have showed that SIN-1, a nitric oxide (NO) donor, injected into the dorsolateral column of the periaqueductal gray (dlPAG) induces flight reactions. This drug, however, can also produce peroxynitrite, which may interfere in this effect. In addition, it is also unknown if this effect is mediated by local activation of soluble guanylate cyclase (sGC). The aims of this study, therefore, were (1) to investigate if NOC-9 (6-(2-Hydroxy-1-methyl-2-nitrosohydrazino)-N-methyl-1-hexanamine), a NO donor that does not produce peroxynitrite, would produce flight reactions after intra-dlPAG administration similar to those induced by SIN-1; (2) to verify if these responses could be prevented by local injection of a selective guanylate cyclase inhibitor (ODQ). Male Wistar rats (n = 5-12) with cannulae aimed at the dlPAG received injections of TRIS (pH 10.0, 0.5 mu l), NOC-9 (75 and 150 nmol), saline or SIN-1 (200 nmol) and were placed in an open arena for 10 min. In a subsequent experiment animals (n = 7-8) were pretreated with ODQ (1 nmol/0.5 mu l) before receiving NOC-9 150 nmol. NOC-9 induced a significant dose-dependent increase in flight reactions in the first minute after injection (% of animals displaying flight: vehicle = 0%, NOC 75 = 67%. NOC 150 = 75%). SIN-1 had a similar effect (100% of animals showing flight) but the effects lasted longer (10 min) than those of NOC-9. The effect of NOC-9 (150 nmol) was prevented by pretreatment with ODQ (% of animals displaying flight: vehicle + NOC 150 = 71 %, ODQ + NOC 150 = 37%). The results suggest that NO donors injected into the dlPAG induce defensive responses that are not mediated by secondary peroxynitrite production. Moreover, they also indicate that these defensive responses depend on activation of local sGC. The data strengthen the proposal that NO can modulate defensive reactions in the dlPAG. (C) 2009 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Subclinical mastitis is a common and easily disseminated disease in dairy herds. Its routine diagnosis via bacterial culture and biochemical identification is a difficult and time-consuming process. In this work, we show that matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) allows bacterial identification with high confidence and speed (1 d for bacterial growth and analysis). With the use of MALDI-TOF MS, 33 bacterial culture isolates from milk of different dairy cows from several farms were analyzed, and the results were compared with those obtained by classical biochemical methods. This proof-of-concept case demonstrates the reliability of MALDI-TOF MS bacterial identification, and its increased selectivity as illustrated by the additional identification of coagulase-negative Staphylococcus species and mixed bacterial cultures. Matrix-assisted laser desorption-ionization mass spectrometry considerably accelerates the diagnosis of mastitis pathogens, especially in cases of subclinical mastitis. More immediate and efficient animal management strategies for mastitis and milk quality control in the dairy industry can therefore be applied.
Resumo:
Plasmids are mobile genetic elements of bacteria that can impart important adaptive traits, such as increased virulence or antibiotic resistance. We report the existence of plasmids in Rickettsia (Rickettsiales; Rickettsiaceae) species, including Rickettsia akari, ""Candidatus Rickettsia amblyommii,"" R. bellii, R. rhipicephali, and REIS, the rickettsial endosymbiont of Ixodes scapularis. All of the rickettsiae were isolated from humans or North and South American ticks. R. parkeri isolates from both continents did not possess plasmids. We have now demonstrated plasmids in nearly all Rickettsia species that we have surveyed from three continents, which represent three of the four major proposed phylogenetic groups associated with blood-feeding arthropods. Gel-based evidence consistent with the existence of multiple plasmids in some species was confirmed by cloning plasmids with very different sequences from each of two ""Ca. Rickettsia amblyommii"" isolates. Phylogenetic analysis of rickettsial ParA plasmid partitioning proteins indicated multiple parA gene origins and plasmid incompatibility groups, consistent with possible multiple plasmid origins. Phylogenetic analysis of potentially host-adaptive rickettsial small heat shock proteins showed that hsp2 genes were plasmid specific and that hsp1 genes, found only on plasmids of ""Ca. Rickettsia amblyommii,"" R. felis, R. monacensis, and R. peacockii, were probably acquired independently of the hsp2 genes. Plasmid copy numbers in seven Rickettsia species ranged from 2.4 to 9.2 per chromosomal equivalent, as determined by real-time quantitative PCR. Plasmids may be of significance in rickettsial evolution and epidemiology by conferring genetic plasticity and host-adaptive traits via horizontal gene transfer that counteracts the reductive genome evolution typical of obligate intracellular bacteria.