9 resultados para Dimères de rhodium

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP)


Relevância:

20.00% 20.00%

Publicador:

Resumo:

We here report the first magnetically recoverable Rh(0) nanoparticle-supported catalyst with extraordinary recovery and recycling properties. Magnetic separation has been suggested as a very promising technique to improve recovery of metal-based catalysts in liquid-phase batch reactions. The separation method is significantly simple, as it does not require filtration, decantation, centrifugation, or any other separation technique thereby, overcoming traditional time- and solvent-consuming procedures. Our new magnetically separable catalytic system, comprised of Rh nanoparticles immobilized on silica-coated magnetite nanoparticles, is highly active and could be reused for up to 20 times for hydrogenation of cyclohexene (180,000 mol/mol(Rh)) and benzene (11,550 mol/mol(Rh) under mild conditions. (c) 2007 Elsevier B. V. All fights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Gamma-lactams and bicyclic oxazolidines are important structural frameworks in both synthetic organic chemistry and related pharmacological fields. These heterocycles can be prepared by the rhodium-catalyzed carbonylation of unsaturated amines. In this work, allylaminoalcohols, derived from the aminolysis of cyclohexene oxide, styrene oxide, (R)-(+)-limonene oxide, and ethyl-3-phenyl-glicidate, were employed as substrates. These allylaminoalcohols were carbonylated by employing RhClCO(PPh3)(2) as a precatalyst under varying CO/H-2 mixtures, and moderate to excellent yields were obtained, depending on the substrate used. The results indicated that an increase in the chelating ability of the substrate (-OH and -NHR moieties) decreased the conversion and selectivity of the ensuing reaction. Additionally, the selectivity could be optimized to favor either the gamma-lactams or the oxazolidines by controlling the CO/H-2 ratio. A large excess of CO provided a lactam selectivity of up to 90%, while a H-2-rich gas mixture improved the selectivity for oxazolidines, resulting from hydroformylation/cyclization. Studies of the reaction temperature indicated that an undesirable substrate deallylation reaction occurs at higher temperature (>100 degrees C). Further, kinetic studies have indicated that the oxazolidines and gamma-lactams were formed through parallel routes. Unfortunately, the mechanism for oxazolidines formation is not yet well understood. However, our results have led us to propose a catalytic cycle based on hydroformylation/acetalyzation pathways. The gamma-lactams formation follows a carbonylation route, mediated by a rhodium-carbamoylic intermediate, as previously reported. To this end, we have been able to prepare and isolate the corresponding iridium complex, which could be confirmed by X-ray crystallographic analysis. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Here we present the catalytic hydrogenation of polycyclic aromatic hydrocarbons (PAHs) to less toxic mixtures of saturated and partial unsaturated polycyclic hydrocarbons under mild reaction conditions using a magnetically recoverable rhodium catalyst and molecular hydrogen as the exclusive H source. The catalyst is easily recovered after each reaction by placing a permanent magnet on the reactor wall and it can be reused in successive runs without any significant loss of catalytic activity. As an example, anthracene was totally converted into the saturated polycyclic hydrocarbon form (ca. 60%) and the partially hydrogenated form, 1,2,3,4,5,6,7,8-octahydroanthracene (ca. 40%). The catalyst operates in a broad range of temperature and H(2) pressure in both organic and aqueous/organic solutions of anthracene and it also exhibits significant activity at low substrate concentrations (20 ppm). This can be an efficient recycling process for hydrogenation of PAHs present in contaminated fluid waste streams. (C) 2009 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The hydrogenation of benzene and benzene derivatives was studied using Ru(0) nanoparticles prepared by a very simple method based on the in situ reduction of the commercially available precursor ruthenium dioxide under mild conditions (75 degrees C and hydrogen pressure 4atm) in imidazolium ionic liquids. Total turnovers (TTO) of 2700 mol/mol Ru were obtained for the conversion of benzene to cyclohexane under solventless conditions and TTO of 1200 mol/mol Ru were observed under ionic liquid biphasic conditions. When corrected for exposed ruthenium atoms, TTO values of 7940 (solventless) and 3530 (biphasic) were calculated for benzene hydrogenation. These reaction rates are higher than those observed for Ru nanoparticles prepared from decomposition of an organometallic precursor in similar conditions. The presence of the partially hydrogenated product cyclohexene was also detected at low conversion rates. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Supported nanoparticles (SNPs) with narrow size distribution were prepared by H(2) reduction of Pd(2+) previously bound, to ligand-modified silica surfaces. Interestingly, the size of the Pd SNPs was tuned by the ligand grafted on the support surface. Amino- and ethylenediamino-functionalized supports formed Pd(0) SNPs of ca. 6 and 1 nm, respectively. The catalytic properties of both Pd(0) SNPs were investigated.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The stereoselective syntheses of cis conformationally constrained glutamate and aspartate analogues, containing an azetidine framework were accomplished from (S)-N-tosyl-2-phenylglycine in moderate overall yields. The key steps in these syntheses involved an efficient Wittig olefination of an azetidin-3-one, followed by a highly stereoselective rhodium catalyzed hydrogenation. The route could also be applied to the synthesis of a trans glutamate analogue, since epimerization of cis to trans isomer could be performed using DBU in toluene at reflux. (C) 2008 Elsevier Ltd. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work presents results of studies of carbon-dispersed Pt-Rh (1:1) nanoparticles as electrocatalysts for the ethanol electro-oxidation. The influences of the crystallite size and the cell temperature on the yields of CO2, acetaldehyde and acetic acid are investigated. Metal nanoparticles were prepared by two different routes: (1) impregnation on carbon powder followed by thermal reduction on hydrogen atmosphere and (2) chemical reduction of the precursor salts. The surface active area and the electrochemical activity of the electrocatalysts were estimated by CO stripping and cyclic voltammetry in the absence and in the presence of ethanol, respectively. Reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR) and Differential Electrochemical Mass Spectrometry (DEMS). The electrochemical stripping of CO and the electrochemical ethanol oxidation were slightly faster on the Pt-Rh electrocatalysts compared to Pt/C. Also, in situ FTIR spectra and DEMS measurements evidenced that the CO2/acetaldehyde and the CO2/acetic acid ratios are higher for the Pt-Rh/C materials in relation to Pt/C. This was ascribed to the activation of the C-C bond breaking by Rh, this being more prominent for the materials with smaller crystallite sizes. (C) 2008 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Pt monolayers deposited on carbon- supported Ru and Rh nanoparticles were investigated as electrocatalysts for ethanol oxidation. Electronic features of the Pt monolayers were studied by in situ XANES (X-ray absorption near-edge structure). The electrochemical activity was investigated by cyclic voltammetry and cronoamperometric experiments. Spectroscopic and electrochemical results were compared to those obtained on carbon-supported Pt-Ru and Pt-Rh alloys, and Pt E-TEK. XAS results indicate a modification of the Pt 5d band due to geometric and electronic interactions with the Ru ant Rh substrates, but the effect of withdrawing electrons from Pt is less pronounced in relation to that for the corresponding alloys. Electrochemical stripping of adsorbed CO, which is one of the intermediates, and the currents for the oxidation of ethanol show faster kinetics on the Pt monolayer deposited on Ru nanoparticles, and an activity that exceeds that of conventional catalysts with much larger amounts of platinum. (c) 2007 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

This work investigates the effects of carbon-supported Pt, Pt-Ru, Pt-Rh and Pt-Ru-Rh alloy electrocatalysts oil the yields of CO2 and acetic acid as electro-oxidation products of ethanol. Electronic and structural features of these metal alloys were studied by in situ X-ray absorption spectroscopy (XAS). The electrochemical activity was investigated by polarization experiments and the reaction intermediates and products were analyzed by in situ Fourier Transform Infra-Red Spectroscopy (FTIR). Electrochemical stripping of CO. which is one of the adsorbed intermediates, presented a faster oxidation kinetics on the Pt-Ru electrocatalyst, and similar rates of reaction on Pt-Rh and Pt. The electrochemical current of ethanol oxidation showed a higher value and the onset potential was less positive oil Pt-Ru. However, in situ FTIR spectra evidenced that the CO2/acetic acid ratio is higher for the materials with Rh, mainly at lower potentials. These results indicate that the Ru atoms act mainly by providing oxygenated species for the oxidation of ethanol intermediates, and point out ail important role of Rh on the C-C bond dissociation. (C) 2007 Elsevier Ltd. All rights reserved.